PROSIDING

SEMINAR NASIONAL

DAN RAPAT TAHUNAN DEKAN

Bidang Ilmu-Ilmu Pertanian
Badan Kerjasama Perguruan Tinggi Negeri
(BKS-PTN) Wilayah Barat

VOLUME III

TEMA:
PERAN IPTEK UNTUK MENGANTISIPASI PERUBAHAN IKLIM
DALAM PERSPEKTIF PERTANIAN BERKELANJUTAN

FAKULTAS PERTANIAN
UNIVERSITAS SRIWIJAYA

PALEMBANG, 23 - 25 MEI 2011
PROSIDING

SEMINAR NASIONAL DAN RAPAT TAHUNAN DEKAN
Bidang ilmu-ilmu Pertanian Badan Kerjasama Perguruan Tinggi Negeri
(BKS-PTN) Wilayah Barat

Tema :

PERAN IPTEK UNTUK MENGANTISIPASI PERUBAHAN IKLIM DALAM
PRESPEKTIF PERTANIAN BERKELANJUTAN

VOLUME 3

FAKULTAS PERTANIAN
UNIVERSITAS SRIWIJAYA
PALEMBANG, 23-25 MEI 2011
Undang-Undang No.19 Tahun 2002
Tentang Perubahan atas Undang-Undang No. 12 Tahun 1997
Pasal 44 tentang Hak Cipta

Pasal 72

1. Barang siapa dengan sengaja dan tanpa hak mengumumkan atau memperbanyak suatu ciptaan atau member i izin untuk izin itu, dipidana dengan pidana penjara paling singkat 1 (satu) bulan dan/atau denda sedikit Rp. 1.000.000,00 (satu juta rupiah), atau pidana penjara paling lama 7 (tujuh) dan/atau denda paling banyak Rp. 5.000.000.000,00 (lima milyar rupiah).

2. Barang siapa dengan sengaja menyerahkan, menyiarkan, memamerkan, mengedarkan, atau menjualkan kepada umum suatu ciptaan atau barang hasil penyelenggaraan Hak Cipta atau Hak Terkait sebagaimana dimaksud pada ayat (1), dipidana dengan pidana lama 5 (lima) tahun dan/atau denda paling banyak Rp. 5.000.000.000,00 (lima ratus juta rupiah) \(v \)
DAFTAR ISI

<table>
<thead>
<tr>
<th>Judul</th>
<th>Penulis</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRIBISNIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KARAKTERISTIK PERSONAL PETANI DAN PENGARUHNYA TERHADAP DINAMIKA DAN KINERJA KELOMPOK TANI</td>
<td>A.D. Murtado</td>
<td>1</td>
</tr>
<tr>
<td>ANALISIS KESANGGUPAN MEMBAYAR IPAIR DAN FAKTOR-FAKTOR YANG MEMPENGARUHINYA PADA PERTANIAN PASANG SURUT</td>
<td>Muhammad Yazid.</td>
<td>10</td>
</tr>
<tr>
<td>ANALISA KEUNTUNGAN DAN DAYA SAING KOMPETITIF DAN KOMPARATIF KOMODITI LOBSTER DI PROVINSI BENGKULU: APLIKASI MODEL PAM</td>
<td>Ketut Sukiyono</td>
<td>17</td>
</tr>
<tr>
<td>PENGARUH HARGA MINYAK SAWIT INTERNASIONAL DAN RENDEMEM MINYAK SAWIT TERHADAP NILAI INDEKS K DI SUMATERA SELATAN</td>
<td>Andy Mulyana, Nasir Dan Riswani</td>
<td>25</td>
</tr>
<tr>
<td>PERUBAHAN HARGA POKOK TBS SEBELUM DAN SETELAH PENURUNAN HARGA MINYAK SAWIT DUNIA DAN PENGARUHNYA TERHADAP PRODUKTIVITAS DAN PENDAPATAN USAHATANI KELAPA SAWIT DI KABUPATEN OGAN KOMERING ILIR</td>
<td>Lifianthi dan Maryati Mustopa Hakim</td>
<td>35</td>
</tr>
<tr>
<td>TRANSMISI HARGA MINYAK SAWIT DUNIA PADA HARGA MINYAK SAWIT LOKAL, HARGA TBS DAN MARGIN HARGA DI SUMATERA SELATAN</td>
<td>Andy Mulyana, Riswani, dan Nasir</td>
<td>47</td>
</tr>
<tr>
<td>PERBANDINGAN PENDAPATAN ANTARA KEGIATAN USAHA BERBASIS LAHAN DENGAN NON LAHAN RENDAH KARBON DI LAHAN GAMBIT SEKITAR PERUSAHAAN HTI</td>
<td>Najib Asmani</td>
<td>59</td>
</tr>
<tr>
<td>ANALISIS PERBANDINGAN PRODUKTIVITAS DAN PENDAPATAN PETANI KELAPA SAWIT SWADAYA DENGAN PLASMA DI SUMATERA SELATAN</td>
<td>Mirza Antoni</td>
<td>65</td>
</tr>
<tr>
<td>STRATEGI PENINGKATAN MUTU DAN PEMASARAN PEMPEK DI SUMATERA SELATAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAIHAN KURNIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUBUNGAN KARAKTERISTIK INDIVIDU PETANI DENGAN PERSEPSINYA TERHADAP KINERJA PENYULUH PERTANIAN LAPANGAN DI KECAMATAN INDRALAYA UTARA OGAN ILIR</td>
<td>Sriati, Selly Oktarina dan Rangga Akbar Tyansan</td>
<td>85</td>
</tr>
<tr>
<td>ECONOMIC EFFICIENCY OF CASSAVA FARMING IN LAMPUNG PROVINCE</td>
<td>Wan Abbas Zakaria</td>
<td>93</td>
</tr>
<tr>
<td>MOTIVASI SEBAGAI ALTERNATIF FAKTOR KEBERHASILAN PRESTASI BELAJAR MAHASISWA</td>
<td>Suherman</td>
<td>110</td>
</tr>
</tbody>
</table>

Prosidings Semirata BKS Barat Bidang Ilmu Pertanian 2011
KEHUTANAN
PEMANFAATAN FUNG I EKTOMIKORIZA SCLERODERMA SPP SEBAGAI
PUPUK HAYATI UNTUK MENINGKATKAN PERTUMBUHAN Shorea pinanga
Melva Riniarti, Irdika Mansur, Cecep Kusmana, Arum S Wulandari
SELEKSI POHON INDUK DI TAHRUA WAN ABDUL RACHMAN UNTUK
MENJAGA KEANEKARAGAMAN HAYATI DALAM UPAYA MEGANTISIPASI
PERUBAHAN IKLIM
Afif Bintoro

KAJIAN AKADEMIK KONVERSI HUTAN MANGGIS MENJADI KEBUN
MANGGIS DI SUMATERA BARAT
Asuar Syarif, Aprisal, Refinaldon, dan Refinal
EFFECT OF INTENSIVE USED PESTICIDES ON POPULATION AND ACTIVITIES
OF SOIL MICROORGANISM
Oktanis Emalinda, Irwan Darfis, Juniarti dan Ilmarni Herlinda
KEANEKARAGAMAN SERANGGA PENGGEREK BATANG PADA TANAMAN BUAHAN,
Tipe Gerekan dan Daerah Sebarannya di Sumatera Selatan
Yulia Pujastuti dan Triani Adam

PENGARUH PRA FERMENTASI GARAM TERHADAP
KARAKTERISTIK KIMIAWI DAN MIKROBIOLOGIS BEKASAM IKAN PATIN
Tri Wardani Widowati, Muhammad Taufik, dan Agus Wijaya

KANDUNGAN CADANGAN KARBON PADA AREA SUKSESI INDUSTRI
PERTAMBANGAN DI PAPUA : MITIGASI DAMPAK PERUBAHAN IKLIM
Hilda Zulkifli, Yanurita Windasari, Indra Yustian, Desly Herlinawati

DAMPAK INTENSIFIKASI PERTANIAN TERHADAP KANDUNGAN LOGAM
BERAT TIMBAL (Pb) DALAM TANAH
Dedik Budianta, Gunart M. Ali dan Chandra Adhitama

MODEL PERTANIAN RAMAH LINGKUNGAN MELALUI PROSES
PEMBELAJARAN EKOLOGI TANAH (PET) DAN SYSTEM OF RICE
INTENSIFICATION (SRI)
Y.Wahyudin & Alik Sutaryat

NATURE OF ALUMINUM TOLERANCE IN CORN (Zea mays L.)
E.S. Halimi

Prosiding Semirata BKS Barat Bidang Ilmu Pertanian 2011
NATURE OF ALUMINUM TOLERANCE IN CORN (Zea mays L.)

E.S. Halimi
Department of Agrotechnology Faculty of Agriculture Sriwijaya University
Kampus Unsri Indralaya, Ogan Ilir 30662, South Sumatera

ABSTRAK
Kajian tentang karakter tolerasi tanaman jagung terhadap aluminium (Al) merupakan topik penting dalam pemecahan masalah peningkatan produktivitas, mengingat domain penanaman jagung adalah lahan-lahan masam dengan permasalahan aluminium yang komplek. Tujuan penelitian ini adalah untuk mengidentifikasi respon tanaman terhadap permasalahan aluminium tersebut. Penelitian yang dilakukan meliputi tiga seri percobaan untuk membentuk germplasma melalui introduksi dan persilangan, memilahkan kelompok tanaman yang toleran dan sensitif, dan mengevaluasi respon tanaman dengan menggunakan larutan nutrisi yang diberikan secara kontinyu. Penelitian secara jelas menunjukkan bahwa karakter sensitivitas diperlihatkan melalui penambahan, pemendekan, dan penurunan pembentukan butu. Penelitian ini tidak berhasil menunjukkan adanya perbedaan dalam berat kering, dan kadar N,P,K, Al di dalam tajuk dan akar, namun ada petunjuk bahwa tanaman yang sensitif secara herangsur menjadi semakin toleran, ketika larutan nutrisi diberikan secara kontinyu. Penelitian ini sepertinya memperlihatkan bahwa karakter toleransi tersebut merupakan mekanisme inklusi, karena tanaman tidak menolak Al untuk masuk ke dalam jaringan tanaman.
Kata kunci: alam, aluminum, toleransi, jagung

INTRODUCTION
Aluminum (Al) is an essential element in the plant including in corn. In low concentration the element may be beneficial, but in higher concentration the element will inhibit growth and development of the plants (Foy and Fleming, 1978). In the field, condition of higher concentration of aluminium usually occurs in acid soils, such as podzolic, latosol, organosol, alluvial, hidromorph, and peat soils (Sanches, 1976). Such soils cover more than 200 million ha of farmland in Indonesia (Setiyono and Soepardi, 1985), and therefore, nature of aluminum tolerance in plant is considered as an important subject to explore in order to solve the problem of promoting plant growth and development in Indonesia.

Rhue and Grogan (1977) and Marschner (1986) described that high Al concentration might inhibit development of root cells of less tolerant corn plant and therefore, the root became shorter and thicker as compared to more tolerant corn plants. The similar research result was reported by Suthipradit et al. (1990) in soybean (Glycine max), cowpea (Vigna anguiculata), green bean (Vigna radiata), and in sorghum (Furiani and Clark, 1981).

Furthermore, Wilcox (1987) stated that, the root condition as described above, would result in the sensitivity of the plant to water stress since the root lost its ability to absorb water. Wagatsuma et al. (1987) explained that the permeability of cell membrane was destroyed due to formation of aluminun complex in the root cap. In addition, many researches reported the change in nutrient transport which was related to aluminum tolerance in sorghum (Baligar et al., 1993; and Galvez and Clarke, 1991), and in wheat as reported by Delhaize et al., (1993). Rangel (1992) stated that higher aluminum concentration inhibited cell division (mytosis), while, Delhaize et al. (1993) reported the relation of aluminum tolerance with the excretion of malic acid from root apices of
As a consequence of root destruction, the less tolerant plants generally showed very bad growth and development when they were planted in the soil with high concentration in aluminum. Kasim and Isman (1992) and Bahar et al. (1994) stated that aluminum stress decreased vigor, delay maturity, and significantly decreased yield. Bahar et al. (1994) reported that the yield of corn decreased from 5.88 ton/ha to 1.89 ton/ha along with the increase of saturated aluminum concentration in the soil from 35% to 65%, while Halimi (1999) reported the tolerant plant produced significantly higher yield of 5.6 ton/ha as compared less tolerant plant of 2.8 ton/ha, when they were planted at Podzolic soil without liming. Furthermore some researches reported differentiation of nutrient content of less and more tolerant plant to aluminum, which was indicated the change in absorption and transportation of the nutrient in the plants. Sallisbury and Ross (1995) reported the nutrient content of corn plant grown in normal condition was about 1.5% N, 0.20% K, 0.92%, and 0.89% Al.

Taylor (1991) described aluminum tolerance in plants in two types of mechanisms of “exclusion” and “inclusion” mechanisms. In exclusion mechanism, the plants show capability of rejecting aluminum to enter the plants. Foy et al. (1978) stated that such capability derived from the ability of plants to change pH around the root surface, and some other researchers stated that this capability derived from formation of aluminum complex through secretion of citric and maleic acid (Delhaize et al., 1993), oxalic acid, sulphylic acid, and phenolic acid (Suthipradit et al., 1990) to bind aluminum before entering the plants. Furthermore, in the inclusion mechanism, the aluminum enter the plants, but the plant was able to revive, since the aluminum was enclosed into inactive form. Marschner (1986) called this mechanism as “inactivation mechanism”, since the aluminum, somehow, was inactivated by the plants. The objective of this research is, therefore, to identify nature of more and less tolerant corn plant to aluminum.

RESEARCH METHODS

Research incorporated three series of experiments (Halimi, 2000; Amran, 2001; and Rosa, 2004) as follows:

Experiment I was done to provide elite germplasm of aluminum tolerant accession of corn. For this purpose population of SA 3 as aluminum tolerant germplasm (Granados et al., 1995) was introduced to Indonesia in April 1994, through letter of authorization from Department of Agriculture of the Republic Indonesia No. UP.220.226. This introduced germplasm was top-crossed to dry-tolerant corn germplasm of Tey DT supplied by BPTP Bogor. The random seed sample of resulting crossed progeny (F1 seeds) of Tey DT x SA 3 was planted in the field of yellow-red podsolic soil and poly-crossed to produced Syn-1 seeds, which was then used in the experiment II.

Experiment II incorporated three populations of newly corn accession derived from the crossed of Tey.DT x SA3, hybrid variety of C7, and local variety of “Genjah mas”. The consideration to use Tey DT x SA3 accession was its genetic recombination of dry and acid tolerance as explained in the experiment I. The consideration to use C7 was its sensitivity to aluminum, while the “Genjah mas” was used as a local control. Population C7 is a commercial Indonesian-hybrid variety, and “Genjah mas” is a local variety of Karang Agung South Sumatera. This experiment, basically, was done to differentiate group of plant in each population to be group of more and less tolerance to aluminum. The experiment utilized nutrient culture technique as outlined by Rhue and Grogan (1977) and proven as an effective method to differentiate more than less tolerant corn plant to aluminum by Halimi (2000). A Random sample of 300 seeds of each population were germinated on the petridish for 3 days, and then transplanted into nutrient culture. The
nutrient composition in the culture was indicated on Table 1. The observation was done 7
days later to differentiate groups of plants which were more and less tolerant to
Aluminum as indicated on Figure 2. These groups of plants, then, were transplanted
into experiment III.
Experiment III was continuation of the experiment II. Groups of more and less tolerant
plants resulted from the experiment II, 20 plants per group, were prepared for experiment
III. These plants were planted on sand by using 10 kg polybag. The sand was pretreated
(floated, washed with tap water, and sun dried) to ensure a minimum content of natural
nutrient. The experiment was set up according to Randomized Complete Block Design
(RCBD) as outlined by Montgomery (1976). A week after planting, the plants were
individually treated by using aluminum nutrient solution as shown in Table 1. The
application of nutrient solution was done by using a continuous droplet method, 500 ml per
day per plant. No other standard practices were imposed to the plants. Observation was
done to measure plant growth and development of the plants including plant height at 15
and 30 days after transplanting. At the end of the research period (30 days after planting),
measurements were taken on dry weights of root and shoot, and nutrient content of N, P,
K, and Al of the shoot and root. Nutrient content was analysis by using standard
method on the composite sample. Appropriate statistical data analysis at α=0.05 was
conducted by use of Analysis of Variance (ANOVA) followed by contrast analysis to
differentiate response of more and less sensitive group of plants (Montgomery, 1976) by
using computer program of Statistical Analysis System (SAS-Institute, 1988).

RESULTS AND DISCUSSION
As an introduced germplasm for aluminum tolerant accession, SA 3 performed
well as a male source for crossing with Tey.DT. The cross of these accession resulted
more seeds (±400 seed/plant) as compared to average (±300 seed/plant), indicated no-
serious sterility problem occurred on the crossed progeny, which was important for plant
breeding prospective (Fehr, 1987). The yield potential of this crossed progeny (Syn-1
progeny) was 66.5 g dry seeds per plant (about 3.5 ton dry seeds/ha) and weight of 100
seeds was about 25 g (Halimi, 2000).

Nature of aluminum tolerance in corn can be differentiated qualitatively as more
and less tolerant plants (Figure 1), although its quantitative differences can not be
significantly shown through statistical analysis (Table 2). As indicated on Figure 1, the
root growth of less tolerant plants was shorter, thicker, less formation of root hair, and
seemed to be halted at certain point, as compared to root growth of more tolerant plants.
Similarly, response was reported by Rhue and Grogan (1976) and Marschner (1986).
Furthermore, Wilcox (1987) stated that in such root development, the plants would be more
sensitive to water stress and lost their ability to absorb mineral and nutrients from the soil.
Marschner (1986) explained that the first response of sensitive plant to aluminum was
indicated by slow development on mitosis and cell elongation due to formation of
aluminum complex with nucleic acid in the apical cells of the root, and therefore, in the
field the root tip often look brownish in color. Wagatsuma (1984) indicated in his
research that, the permeability of cell membrane was also destroyed because of higher
content of aluminum in cortex and endodermis of the roots.

Despite clear qualitative differentiation in response of less and more tolerant
plants, this research did not observe quantitative differentiation of tolerant corn plant to
aluminum (Table 2). Statistical analysis on te data including plant height (15 and 30 days
after transplanting), dry weight , and N, P, K, Al content in the shoot and root showed no
significant differences (Table 2). There is indication, however, that in the observation at
15 days after planting, the plants of more tolerant plants tend to grow taller than less tolerant plant. Later on, in the observation at 30 days after planting, the plant heights were about the same (Figure 2). This is interesting for this research. In observation at 15 days after planting, the less tolerant plants had shorter plant height than more tolerant plants indicated that the less tolerant plant suffered from aluminum treatment which was applied in continuous droplet method. Later on, in the observation at 30 days after planting, the plant heights were about the same. This indicated that, when the aluminum treatment is given as a continuous dorpelt (i.e. 0.125 mM Al₂(\text{SO}_4)_3 in 500 ml solution/day), the less tolerant plants gain the ability to reappear a tolerance to aluminum. This is interesting, since such phenomenon never been reported by any researchers. At 15 days after planting the plants height of less and more tolerant plant was 40-50 cm and 50-70 cm respectively. At 30 days after planting, the plant height of less and more tolerant plants was about the same of 90-110 cm, respectively (Figure 4). The dry weight of shoot and root of less and more tolerant plants at 30 days after planting was about the same and not significantly different by Contrast Analysis at α=0.05 (Table 2).

Furthermore, this research indicated no significant differences of nutrient content (N,P,K, and Al) in the shoot and root of less and more tolerant plants measured at 30 days after planting (Table 2). The N, P, K, and Al content of shoot of less tolerant plants were 1.58-1.72 %, 0.19-0.32%, 1.94-2.28%, and 0.01-0.02%, respectively; while the N, P, K content of root less tolerant plants were 0.62-0.78 %, 0.13-0.14%, 0.90-1.06 %, and 0.18-0.19%, respectively. On the other hand, the N, P, K, and Al content of shoot of more tolerant plants were 1.57-1.67 %, 0.26-0.50%, 2.09-2.51%, and 0.02-0.03%, respectively; while the N, P, K content of root more tolerant plants were 0.64-0.72 %, 0.12-0.13%, 0.95-1.11%, and 0.17-0.19%, respectively. No significant differences of nutrient content in the shoot and root indicated no rejection of corn plants against nutrients to enter the plant through root surface. As described by Taylor (1992) such type of tolerant mechanism was called as "Inclusion mechanism" in which the resistant plant was not rejecting of aluminum to enter the plants.

CONCLUSION

This research conclude that nature of less tolerant corn to aluminum can be differentiated qualitatively as a shorter and thicker root, and less formation of root hair as compared to more tolerant plants. Despite clear qualitative differentiation, this research do not observed significant differences in most variables measured at 30 days after planting, including dry weight, and N,P,K, Al content of shoot and root. However, there is indication that, when the application of aluminum solution is given in a continuous droplet method, the less tolerant plant is suffered more as compared to more tolerant plants, but later on, they gain ability to reappear as more tolerant plant. This research, finally, concludes that nature of aluminum tolerance in corn considered as "as "Inclusion mechanism" in which the plant was not rejecting aluminum to enter the plants.

AKNOWLEDGEMENTS

A sincere appreciation is extended Mr. G. Granados of CYMMIT, Mexico and to BPTP Bogor for providing SA-3, and TEY.DT seeds, respectively; to Mr. Amran and Mrs. Rosa for their assistance in the research, and to Directorate General of Higher Education (DGHE) of Indonesia, for providing grant to this research.
REFERENCES

Amran. 2001. Top-crossing and evaluation of acid-soil tolerant corn plant genotypes (Zea mays L.) by the use of water culture (translated title). Bachelor Scirption. Faculty of Agriculture Sriwijaya University (not published).

Halimi, E.S. 2000. Genetic improvement to increase corn production in acidic soil (translated title). Research Grant Report submitted to DGHE. Faculty of Agriculture University of Sriwijaya. (not published).

Figure 1. Differentiation of groups or more and less tolerant plants to Aluminum by using nutrient culture technique
Figure 2. Plant height (cm) of more and less tolerant plants to aluminum measured at 15 (a) and 30 (b) days after planting on corn variety of C7, "Genjah Mas", and Tey DT.

Table 1. Nutrient composition solution to test Aluminum tolerance in corn (Rhue and Grogan, 1977).

<table>
<thead>
<tr>
<th>Nutrient sources</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(NO₃)₂</td>
<td>1.00 mM</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>0.50 mM</td>
</tr>
<tr>
<td>KNO₃</td>
<td>0.50 mM</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>0.05 mM</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.10 mM</td>
</tr>
<tr>
<td>MnSO₄</td>
<td>2.00 μM</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>0.30 μM</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>0.80 μM</td>
</tr>
<tr>
<td>NaCl</td>
<td>30.0 μM</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>10.0 μM</td>
</tr>
<tr>
<td>Na₂MoO₄</td>
<td>0.30 μM</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>10.0 μM</td>
</tr>
<tr>
<td>Al₂(SO₄)₃</td>
<td>0.125 mM</td>
</tr>
</tbody>
</table>

Table 2. Average value of variable measured on the research at 30 days after planting and the F-value of contrast analysis of more and less tolerant plant in variety of C-7, "Genjah Mas", and Tey DT x SA3 Acession.

<table>
<thead>
<tr>
<th>No</th>
<th>Variables</th>
<th>variety of C-7</th>
<th>F value</th>
<th>Variety of "Genjah Mas"</th>
<th>F value</th>
<th>Tey DT x SA3 Acession</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dry weight of root (g)</td>
<td>5.90</td>
<td>3.63</td>
<td>0.16</td>
<td>3.84</td>
<td>4.77</td>
<td>2.16</td>
</tr>
<tr>
<td>2</td>
<td>Dry weight of shoot (g)</td>
<td>25.6</td>
<td>24.21</td>
<td>0.46</td>
<td>19.0</td>
<td>18.0</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>N content on shoot (%)</td>
<td>1.63</td>
<td>1.68</td>
<td>0.44</td>
<td>1.67</td>
<td>1.72</td>
<td>0.30</td>
</tr>
<tr>
<td>4</td>
<td>P content on shoot (%)</td>
<td>0.50</td>
<td>0.19</td>
<td>1.08</td>
<td>0.33</td>
<td>0.31</td>
<td>2.16</td>
</tr>
<tr>
<td>5</td>
<td>K content on shoot (%)</td>
<td>2.51</td>
<td>2.28</td>
<td>1.24</td>
<td>2.10</td>
<td>2.27</td>
<td>2.12</td>
</tr>
<tr>
<td>6</td>
<td>Al content on shoot (%)</td>
<td>0.02</td>
<td>0.02</td>
<td>1.61</td>
<td>0.02</td>
<td>0.01</td>
<td>2.19</td>
</tr>
<tr>
<td>7</td>
<td>N content on root (%)</td>
<td>0.68</td>
<td>0.71</td>
<td>1.22</td>
<td>0.72</td>
<td>0.78</td>
<td>2.15</td>
</tr>
<tr>
<td>8</td>
<td>P content on root (%)</td>
<td>0.13</td>
<td>0.13</td>
<td>0.05</td>
<td>0.13</td>
<td>0.14</td>
<td>1.16</td>
</tr>
<tr>
<td>9</td>
<td>K content on root (%)</td>
<td>0.95</td>
<td>0.90</td>
<td>2.04</td>
<td>1.00</td>
<td>1.01</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>Al content on root (%)</td>
<td>0.17</td>
<td>0.18</td>
<td>2.19</td>
<td>0.18</td>
<td>0.18</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Note: No significant differences of the F-values at $\alpha=0.05$