PROCEDINGS
of the International Seminar

The Council of Rector of Indonesian State University (CRISU)
and The Council of University President of Thailand (CUPT)

"EXPLORING RESEARCH POTENTIALS"

Editors:
A. Muslim (Indonesia); Siti Herlinda (Indonesia); Nurly Gofar (Malaysia);
Melanie Boursnell (Australia); K.T. Tantrakarnapa (Thailand);
Judhistuty Februhartany (Indonesia); Misnaniarti (Indonesia);
Najmah (Indonesia); Suci Destriatania (Indonesia)

Published by Sriwijaya University
Cooperation with
The Council of Rector of Indonesian State University (CRISU)
and The Council of University President of Thailand (CUPT)

SRIWIJAYA UNIVERSITY
PALEMBANG, INDONESIA, 20-22 OCTOBER 2011
PROCEEDINGS
of the International Seminar

The Council of Rector of Indonesian State University (CRISU)
and The Council of University President of Thailand (CUPT)

"EXPLORING RESEARCH POTENTIALS"

Editors:
A. Muslim (Indonesia); Siti Herlinda (Indonesia); Nurly Gofar (Malaysia);
Melanie Boursnell (Australia); K.T. Tantrakarnapa (Thailand);
Judhlastuty Februhartanty (Indonesia); Misnaniarti (Indonesia);
Najmah (Indonesia); Suci Destriatania (Indonesia)

Published by Sriwijaya University
Cooperation with
The Council of Rector of Indonesian State University (CRISU)
and The Council of University President of Thailand (CUPT)

The Council of Rector of Indonesian State University (CRISU) and the Council of University President of Thailand (CUPT)

Editors:
A. Muslim (Indonesia)
Siti Herlinda (Indonesia)
Nurly Gofar (Malaysia)
Melanie Boursnell (Australia)
K. T. Tantrakarnapa (Thailand)
Judhiastuty Februartanty (Indonesia)
Miskaniarti (Indonesia)
Najmah (Indonesia)
Suci Destriatania (Indonesia)

Published by Sriwijaya University on Cooperation
The Council of Rector of Indonesian State University (CRISU)
The Council of University President of Thailand (CUPT)
Copyright @ 2011 by Sriwijaya University

All rights reserved. Publish in Indralaya, Indonesia

Reproduction or translation of any part of this Proceedings beyond that permitted by Sriwijaya University Copyright, without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to Sriwijaya University

Sriwijaya University:
Jl. Palembang-Prabumulih Km. 32, Ogan Ilir, Indralaya, Indonesia
Telephone +62711580069, 580169, 580645, facsimile: +62711580664

The Council of Rector of Indonesian State University (CRISU) and the Council of University President of Thailand (CUPT)

ISBN 978-979-98938-5-7
FOREWORD

Dear special guests:

Minister for National Education, Ambassadors of Thailand for Indonesia, Ambassadors of
Indonesia for Thailand, all delegates from The Council of Rector of Indonesian State University
(CRISU) and The Council of University President of Thailand (CUPT), Government of South
Sumatra and Palembang City, and all The 6th CRISU-CUPT Conference, International Seminar and
Exhibition participants

On behalf of the Sriwijaya University as Host University, I would like to extend my
warmest welcome to all of the participant of The 6th CRISU-CUPT Conference, International
Seminar and Exhibition, held on 20th-22nd October 2011 at Sriwijaya University Palembang with the
join theme “Exploring Research Potentials”.

There will be many challenges and opportunities in higher education in the Asean
Community in the next decade. This is, therefore, considerable significant will arise from the The
6th CRISU-CUPT Conference, International Seminar and Exhibition. The previous five CRISU-
CUPT conferences have been significantly deepening the relationships and come up with very fruitfull
discussion in various subjects of collaboration and cooperation, for example, global warming, global
mobility, academic interaction and cross-fertilization. The 5th conference was held in Chiang Mai,
Thailand on July 7th-9th 2010 and appointed Sriwijaya University as a host for the 6th conference.

The 6th CRISO-CUPT conference will include many agenda, with not only include the
meeting of the President Forum, the Dean Forum, and the Student Forum, but also will include
international Seminar and Exhibition. This conference, therefore, might come up with more fruitfull
conclusion and deepest commitment among participants.

With regard to considerable conference agenda, we greatly appreciate any support and
sponsorship derived from any govermental as well as private institutions for the success of the
conference. Great appreciation is also handed to organizing comittee of the conference for any
voluntary effort that bring to the success of the conference.

The 6th CRISU-CUPT Conference, International Seminar and Exhibition is being attended
by about 600 participants. I hope you enjoy the beauty of Palembang City as one of the oldest city in
Indonesia which is 1318 years old, established during the glory of the vast Sriwijaya Kingdom. The
city also have variety of interesting culture and places.

Palembang, October 2011
Chairperson,

Prof. Dr. Badia Perizade, M.B.A
Rector of Sriwijaya University
TABLE OF CONTENTS

Foreword iii
Table of Contents iv

Papers of Keynote Speakers:
1. Mental Illness In Australia (Dr. Melanie Boursnell, University of Newcastle Australia) xvi
2. Chemical Toxicology towards humans health and EHIA (Environmental Health Impact Assessment) in Thailand (Prof. Kraichat Tantrakarnapa, Faculty of Public Health, Mahidol University, Thailand) xxvi
3. Nutrition transition in Indonesia (DR. Ir. Judhiastuty Februhartanty, M.Sc, SEAMEO RECFON Indonesia, Indonesia University) xxxvii
4. Cancer : Genetic And Environmental Causes And Risk Factors (Prof. Dato’ Dr. M.S. Lye, University Putra Malaysia) vi
5. Accelerating Diversification In Food Consumption Based on Indigenous Resources as An Alternative Action To Support Food Security In Indonesia (Prof. Dr. Rindit Pambayun, M.P, Sriwijaya University, Indonesia) vi

Papers of Presenters:
A. Food Security
1. Diversity, Domination, and Distribution Of Rice Stem Borer Species and it Interaction with Egg Parasitoids in Various Land Typology in Jambi (Wilyus1, Siti Herlinda2, Chandra Irsan2, Yulia Pujiasmuti2: Agriculture Faculty of Jambi University, Faculty of Agriculture, Sriwijaya University) 1
2. Land Suitability for Elaeis Guineensis Jacq Plantation in South Sumatra, Indonesia (M. Edi Armanto1,2, M.A. Adzemi2, Elisa Wildayana1, M.S. Imanudin1, S.J. Priatna1 and Gianto3: 1Faculty of Agriculture, Sriwijaya University, South Sumatra, Indonesia, 2Faculty of Agrotechnology and Food Science (FASM), UMT Terengganu, Malaysia, 3Forestry Delineation Agency, Department of Forestry, Indonesia) 10
3. From Economic Valuation to Policy Making in Forest Conversion for Elaeis Guineensis Jacq Plantation (Elisa Wildayana1, M. Edi Armanto1 and M.A. Adzemi2: 1Faculty of Agriculture, Sriwijaya University, Indonesia, 2Faculty of Agrotechnology and Food Science (FASM), UMT Terengganu, Malaysia) 19
4. Floating Agriculture Model from Bamboo for Rice Cultivation on Swamp Land At South Sumatra (Siti Masreah Bernas, Siti Nurul A.F. and Agung Maulana: Soil Science Program Study and Low Land Management Field, Agricultural Faculty, Sriwijaya University) 27
5. The Responsiveness of Jambi Rice Acreage to Price and Production Costs (Edison: Faculty of Agriculture, Jambi University, Indonesia) 34

Proceedings of the International Seminar, Palembang 20-22 October 2011 vi
27. Responses of Several Tropical Plant Species to Polluted Air Condition in the City (E.S. Halimi and Dian Agustina: Department of Agroecotechnology Faculty of Agriculture Sriwijaya University) 184

28. Freshwater Fish Diversity in Pulokerto Musi River, Palembang-South Sumatra: A Preliminary Results (Hilda Zulkifli, Doni Setiawan and Indra Yustian: Department of Biology, Faculty of Science, Sriwijaya University) 189

29. Vegetational Structure and Composition in Pulokerto Island, Musi River-Palembang, South Sumatra (Indra Yustian dan Hilda Zulkifli: Department of Biology, Faculty of Science, Sriwijaya University) 195

30. Climate Change, Environment and Plant Diseases Development (Nurhayati: Department of Plant Pest and Disease, Agriculture Faculty, Sriwijaya University) 200

31. Biophysical Characteristics of Tailings Deposition Area and Its Contribution to Vegetation Growth (Yunniita Windusari¹, Robiyanto Hendro Susanto², Zulkifli Dahlan³, Wisnu Susetyo⁴, And Indra Yustian⁵: Doctoral student of Environmental Science and Lecture of Mathematic and Sciences Faculty of Sriwijaya University, ²Lecture of Environmental Sciences Programme, Sriwijaya University and Supervisor commission, ³Senior Advisor PT Freeport Indonesia and Supervisor commission) 206

32. Biodegradation of Petroleum Hydrocarbon by Single and Consortium of Hydrocarbonolastic Bacteria From Petroleum Polluted Mangrove Areas (Hary Widjajanti¹, Iswandi Anas², Nuni Gofar³, Moh.Rasyid Ridho: ¹Agricultural Science of the Graduate Program of Sriwijaya University) 212

C. Energy, Education and Others

33. Temperature and Relative Humidity Gains of “Teko Bersayap” Model Solar Dryer (a Research Note) (Yuwana, Bosman Sidebang and Evanila Silvia: Department of Agricultural Technology, Faculty of Agriculture, University of Bengkulu) 221

34. Proposes of Implementation of Sustainable Subgrade on Highway Construction in South Sumatera By Using Coal Combustion Products (CCPs) as Stabilizer (Achmad Fauzi¹, Usama Juniansyah Fauzi², Wan Mohd Nazmi³: ¹The Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang, Malaysia. ²Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia) 228

35. Green Pavement by Using High Density Polyethylene Modified Asphalt as Aggregate Replacement by, Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (Wan Mohd Nazmi and Wan Abdul Rahman Wan Rohaya Wan Idris, and Achmad Fauzi Abdul Wahab: Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, Malaysia) 236
EC 07

RESPONSES OF SEVERAL TROPICAL PLANT SPECIES TO POLLUTED AIR CONDITION IN THE CITY

E.S. Halimi and Dian Agustina
Department of Agroecotecnology Faculty of Agriculture and Graduate Student
Sriwijaya University

ABSTRACT

It is common to use plant species to fight air pollution problem. This research was design to evaluate several tropical plant species with respect to its tolerance to polluted air condition in the city. Field observations were took place at Palembang City, South Sumatra, Indonesia. Research incorporated fifteen plant species grown at two different sites of Highly Polluted Air (HPA-site), and Non-Polluted Air (NPA-site), which consisted of 30 samples of mature plants per site. Quick measurement on the chlorophyll content were imposed on five mature leafs per sample. Research indicated that tropical plant species showed various response. With respect to the chlorophyll content, several plant species, such as Ficus sp, Hemigraphis sp, and Alamanda sp, showed no significant reduction either they were grown at HPA-site or NPA-site.

Keywords: Tropical, plant, pollution, air.

INTRODUCTIONS

It is common to use plant species to fight polluted air problem. Many cities in the world use various plat species to establish such beautiful garden, huge greenbelt to clean polluted air which especially derive from transportation modes such as cars, motorcycles, trucks and buses. Irwan (1996 and 1997) described the importance of establishing green belt in the city which mainly to solve environmental crisis, environmental recovery, and other aesthetical purposes.

Transportation modes, such as cars, motorcycles, truck and buses are the major factor to cause polluted air in the city. Wardhana (2001) stated that transportation devices produce emission gas which contributes more than half of air pollution problem in the city. Emission gas such as Carbon Monoxide (CO), Nitrogen Oxide (NOx), Sulfur Oxide (SOx), Hydrocarbon (HC), and Pb particles considered as pollutants that are toxic materials to the people, animal, and plants (Hawkes, 1996; Sastrawijaya, 1991). Indonesian Government Rule Number 41, May 26, 1999, described the maximum content of that emission gas in clean air (Table 1).

Table 1. The maximum content of emission gas in the clean air

<table>
<thead>
<tr>
<th>No.</th>
<th>Gas and particles</th>
<th>Maximum content (micro g/N m³)</th>
<th>Measurement period (hours)</th>
<th>Instrument to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SO2</td>
<td>900</td>
<td>1</td>
<td>Spectrophotometer</td>
</tr>
<tr>
<td>2</td>
<td>CO</td>
<td>30 000</td>
<td>1</td>
<td>NDIR Analyzer</td>
</tr>
<tr>
<td>3</td>
<td>NO2</td>
<td>400</td>
<td>1</td>
<td>Spectrophotometer</td>
</tr>
<tr>
<td>4</td>
<td>O3</td>
<td>235</td>
<td>1</td>
<td>Spectrophotometer</td>
</tr>
<tr>
<td>5</td>
<td>HC</td>
<td>160</td>
<td>3</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>6</td>
<td>Pb particles</td>
<td>2</td>
<td>24</td>
<td>Hi-Vol AAS</td>
</tr>
<tr>
<td>7</td>
<td>Dust</td>
<td>230</td>
<td>24</td>
<td>Hi-Vol AAS</td>
</tr>
</tbody>
</table>

Furthermore, Hawkew (1996) stated that the presence of pollutants in the air might result in the climate change and alteration in the plant growth and development. High content of Nitrogen Oxide, Sulfur Dioxide, and CFC cause the ozone layer to be thinner that increase in UV radiation and therefore, the atmosphere temperature might increase to certain level. When the pollutant enter stomata, and invade the cells, the plant growth and development will be effected due to depreciation in the chlorophyll content and change in sugar mobilization. These change will alter some essential metabolic process in the plant, such as photosynthesis and respiration. Sinot and Wilson (1955) eventually stated that chlorophyll played very important role in metabolic process of Photosynthesis that lead to the change in growth and development of the plants.

Sikora and Chappelka (1996) reported physical effects of the pollutant to the plant organ which include burning on leafs edge and reduction in shoot initiation. The objective of this research, therefore, was to evaluate several tropical plant species with respect to its tolerance to polluted air condition in the city by measuring chlorophyll content on the plants. Tolerant plant species is indicated by no significant reduction of the chlorophyll content of the plant grown in the highly polluted area as compared to the plant grown in non-polluted area.

MATERIALS AND METHODS

Observations were took place at Palembang City, South Sumatra, Indonesia, which temperature ranges from 23 to 31 °C and rainfall ranges from 80 to 469 mm per month. Observation on each plant species were done at two different sites of Highly Polluted Air (HPA-site), and Non-Polluted Air (NPA-site). The HPA-site was defined as the area closed to city road, in which, jam-packed vehicles were usually occur, while the NPA-site was defined as the area that far from the city road, such as remote farmland, villages, and housing complex. The research utilized 30 mature plants grown in the site, in which, 5 leafs were used to measure chlorophyll content. Quick measurements on the Chlorophyll Content Value (CCV) were imposed on the mature leafs by using portable chlorophyll meter of SPAD 502. Statistical analysis method of Two Sample T-test (Bender and Kramer, 1989) were used to determine significant reduction in the mean value of chlorophyll content of the plant in the PMA-site as compared the that of NPA-site. The analysis were done by using computer program of Statistical Analysis System (SAS Institute, 1983).

RESULTS AND DISCUSSION

Responses of several tropical plant species to polluted air condition were assessed by chlorophyll measurement on the leafs. Hopkins (1999) and Smith and Mansfield (1984) stated that air pollutants enter the plants through stomata on the surface of the leafs. This toxic material, then involve into metabolic process of CO₂ diffusion that end up with the destruction of the chlorophyll body (chloroplast) and chlorophyll formation. Small concentration of 0.035 μL L⁻¹ SO₂ in the air, for example, was reported to significantly inhibit chlorophyll membrane, and in higher concentration was reported to make significant destruction on the chlorophyll bodies (Hopkins, 1999 and Huttunen and Soikkeli, 1982). In addition to Sikora and Chappelka (1996) report, this research observed significant alteration on the leaf color and necrosis on the leafs of the several sensitive plant due to reduction of chlorophyll content.

Hopkins (1999) reported that pollutants, such as, SO₂ in the leafs will dissolve into water to be ionic form of SO₃²⁻ and HSO₃⁻. These ionic forms were reported to be harmful for several
plant species, but no-effect for others, as the plants showed ability to eliminate the effect by certain mechanisms such as chelatitation. Furthermore, Wilmer (1983) reported that anatomy and number of stomata on the leaf surface contribute to the amount of pollutants to enter the plant, while Amperawati and Basuki (2000) stated that leaf texture was also determine the amount of pollutants to enter the plants. Apparently, these ability and characteristics play an important role on tolerance of plant species to polluted air condition in the city.

As shown on Table 2, this research indicated that tropical plant species had various content of chlorophyll. In normal air condition (NPA-site) the chlorophyll content ranged from 40 to 60 CCV, while in high polluted air condition (HPA-site) the chlorophyll content ranged from 18 to 59 CCV. In NPA-site, the plant species with highest chlorophyll content of 59.32 CCV was attained by Alamanda sp and the plant with lowest chlorophyll content of 28.02 CCV was attained by Pisonia sp. On the other hand, in HPA-site, the plant species with highest chlorophyll content of 58.89 CCV was also attained by Alamanda sp and the plant with lowest chlorophyll content of 18.81 CCV was also attained by Pisonia sp. It is interesting, as the same plant species attained the highest and the lowest chlorophyll content either for NPA-site or HPA-site.

Statistical analysis method (Table 2) of Two Sample T-test (Bender and Kramer, 1989) that were used to determine significant reduction in the mean value of chlorophyll content of the plant in the HPA-site as compared to that of NPA-site by using computer program of Statistical Analysis System (SAS Institute, 1983), indicated that more tropical plant species showed significant reduction of chlorophyll content when they were grown at high polluted air condition (HPA-site). These reduction ranged from 3.39 to 21.38 CCV, which was statistically significant at P<0.01, and therefore they were apparently considered as sensitive plant species to polluted air condition in the city. These tropical plant species include Ixora sp., Pisonia sp., Bauhinia sp., Chrysalidocarpus sp., Cytostachys sp., Canna sp., Duranta sp., Lantana sp., Chlorophytum sp., Bougainvillea sp., Nephrolepis sp., and Licuala sp.. The common name of these plants in Indonesia is, “Asoka”, “Kol Banda”, “Bunga kupu-kupu”, “Palem kuning”, “Palem merah”, “Kana”, “Duranta”, “Lantana”, “Lili paris”, “Bogenvil”, “Pakis”, and “Palem kol”, respectively.

Furthermore, this research observed that three plant species showed less reduction in chlorophyll content when they were grown at highly polluted air conditions. The reduction was less than 1.0 CCV (0.35-0.73 CCV). The statistical analysis method (Table 2) of Two Sample T-test (Bender and Kramer, 1989) by using computer program of Statistical Analysis System (SAS Institute, 1983), indicated that these reduction is not significant (P>0.6) and therefore they were apparently considered as tolerant plant species to polluted air condition in the city. These tropical plant species include Ficus sp., Hemigraphissp., and Alamanda sp.. The common name of these plants in Indonesia is, “Beringin”, “Sambang Merah”, and “Alamanda”, respectively.
Table 2. Chlorophyll content of several tropical plant species grown at Highly Polluted Air (HPA-site), and Non-Polluted Air (NPA-site) and their Statistical Analysis of Two Sample T-test.

| No. | Plant species | Chlorophyll content | Δ | Calculated [T] | Prob>|T| |
|-----|-------------------|---------------------|-------|---------------|------|
| | | NPA-site | HPA-site | | |
| 1. | Ixora sp | 53.47 | 48.65 | 4.82 | 3.39**| 0.0014|
| 2. | Ficus sp | 59.14 | 58.41 | 0.73 | 0.46ns| 0.6418|
| 3. | Pisonia sp | 28.08 | 18.81 | 9.21 | 10.63**| 0.0001|
| 4. | Bauchinia sp | 40.96 | 36.34 | 4.62 | 4.28** | 0.0001|
| 5. | Chrysalidocarpus sp | 58.36 | 45.84 | 12.52 | 6.66**| 0.0001|
| 6. | Cyatostachys sp | 59.32 | 46.3 | 13.29 | 8.85**| 0.0001|
| 7. | Hemigraphis sp | 47.54 | 47.05 | 0.49 | 0.45ns| 0.6548|
| 8. | Canna sp | 57.90 | 38.21 | 19.69 | 10.43**| 0.0001|
| 9. | Allamanda sp | 59.24 | 58.89 | 0.35 | 0.27ns| 0.7870|
| 10. | Duranta sp | 49.20 | 32.41 | 16.79 | 12.38**| 0.0001|
| 11. | Lantana sp | 40.66 | 37.27 | 3.39 | 2.89**| 0.0054|
| 12. | Chlorophytum sp | 44.24 | 28.37 | 15.87 | 9.49**| 0.0001|
| 13. | Bougainvillea sp | 53.15 | 31.77 | 21.38 | 16.96**| 0.0001|
| 14. | Nephrolepis sp | 52.37 | 45.84 | 6.53 | 20.29**| 0.0001|
| 15. | Licuala sp | 54.52 | 43.48 | 11.04 | 6.09**| 0.0001|

CONCLUSIONS

This research conclude that tropical plant species had various content of chlorophyll range from 40 to 60 CCV. Response of tropical plant species when they were grown at high polluted air condition (HPA-site) were indicated by reduction in the chlorophyll content with ranged from 18 to 59 CCV. Plants that are sensitive to high polluted air condition indicated by great reduction in the chlorophyll content ranged from 3.39 to 21.38 CCV. These sensitive plants include Ixora sp., Pisonia sp., Bauchinia sp., Chrysalidocarpus sp., Cyatostachys sp., Canna sp., Duranta sp., Lantana sp., Chlorophytum sp., Bougainvillea sp., Nephrolepis sp., and Licuala sp., with is usually called in Indonesia as, “Asoka”, “Kol Banda”, “Bunga kupu-kupu”, “Palem kuning”, “Palem merah”, “Kana”, “Duranta”, “Lantana”, “Lili paris”, “Bogenvil”, “Pakis”, and “Palem kōl”, respectively. On the other hand, plants that are tolerant to high polluted air condition indicated by less reduction in the chlorophyll content ranged from 0.35-073 CCV. These plant species include Ficus sp., Hemigraphissp., and Alamanda sp., with is usually called in Indonesia as, “Beringin”, “Sambang Merah”, and “Alamanda”, respectively.

RECOMMENDATION

The use of tropical plant species in establishment of city garden and green-belt to fight polluted air problem in the city, should consider tolerance of the plant to high polluted air condition. Research is required to determine tolerant plants, before they are grown at high polluted air condition.
REFERENCES

