Contents

List of Figures ix
List of Plates xiii
List of Tables xv
Preface xvii
Taxonomy of Arbuscular Mycorrhizal Fungi Referred to in this Book xxı

1. Challenges to Agriculture Systems
 1.1 Current and Future Challenges to Agriculture Systems 1
 1.2 The Approach to Meeting the Challenges to World Agriculture 5
 1.3 Conclusions 14

2. Agronomic Opportunities to Modify Cropping Systems and Soil Conditions Considered Supportive of an Abundant, Diverse AMF Population
 2.1 Components of Cropping Systems 16
 2.1.1 Land Preparation 16
 2.1.2 Cropping 25
 2.1.3 Application and Use of Mineral Fertilizers, Organic, and Inorganic Amendments in Crop Production 28
 2.1.4 The Application of Pesticides 34
 2.2 Key Aspects of Agricultural Systems on Diversity of Mycorrhiza 35
 2.3 Conclusions 38

3. The Roles of Arbuscular Mycorrhiza and Current Constraints to Their Intentional Use in Agriculture
 3.1 Benefits of Arbuscular Mycorrhiza 39
 3.1.1 Acquisition of Mineral Nutrients 41
 3.1.2 Defense Against Abiotic Stresses 49
 3.1.3 Defense Against Biotic Stresses 50
 3.1.4 Water Relations in Arbuscular Mycorrhizal Plants 52
 3.2 Constraints to Intentional Use of AMF in Agriculture 54
 3.3 Conclusions 58
4. Diversity in Arbuscular Mycorrhizal Fungi
 With Clarisse Brigido
 4.1 Ecological Roles of Arbuscular Mycorrhizal Fungi 61
 4.2 Basis of Functional Diversity in Arbuscular Mycorrhizal Fungi 62
 4.2.1 Taxonomy of Arbuscular Mycorrhizal Fungi 62
 4.2.2 Diversity of Arbuscular Mycorrhizal Fungi Related to Growth Habit 64
 4.2.3 Interaction Between the Genotypes of Fungi and Host Plants and the Diversity of Arbuscular Mycorrhiza 65
 4.3 Functional Diversity Associated with Host-Plant Benefits 66
 4.3.1 Acquisition of Mineral Nutrients 67
 4.3.2 Protection Against Abiotic Stresses 69
 4.3.3 Protection Against Biotic Stresses 73
 4.3.4 Improvement in Soil Structure 74
 4.4 AMF Diversity Associated with the Management of Different Ecosystems 75
 4.5 Conclusions 78

5. Impacts on Host Plants of Interactions Between AMF and Other Soil Organisms in the Rhizosphere
 With Luis Albo and Sabaruddin Kadir
 5.1 Interactions Between AMF and Other Soil Microbes 82
 5.1.1 Tripartite Interaction Between AMF, Rhizobia, and Legumes 85
 5.1.2 Other Interactions With Bacteria 103
 5.2 Interactions Between AMF and Other Fungi 107
 5.3 Interactions Between AMF and Soil Fauna 107
 5.3.1 Interactions With Arthropods 107
 5.3.2 Interactions With Earthworms 108
 5.4 Conclusions 109

6. The Significance of an Intact Extraradical Mycelium and Early Root Colonization in Managing Arbuscular Mycorrhizal Fungi
 6.1 Importance of Early Arbuscular Mycorrhizal Fungi Colonization 112
 6.2 Arbuscular Mycorrhizal Fungi Inoculum Sources 114
 6.2.1 Spores 114
 6.2.2 Colonized Root Fragments 116
 6.2.3 Extraradical Mycelium 116
 6.3 ERM as an Effective Arbuscular Mycorrhiza Inoculum Source for Field Crops 119
 6.3.1 Persistence of Infective Extraradical Mycelium in Soil 119
 6.3.2 AMF Taxonomic Cluster Colonizing Strategies 120
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3 The Presence of Adequate Host Plants and ERM Integrity: Crop Rotations and Tillage Regime</td>
</tr>
<tr>
<td>6.4 Multiple Roles of ERM and Common Mycorrhizal Networks</td>
</tr>
<tr>
<td>6.4.1 Transfer of Nutrients Between Plants</td>
</tr>
<tr>
<td>6.4.2 Communication Between Plants</td>
</tr>
<tr>
<td>6.4.3 Development of Soil Structure</td>
</tr>
<tr>
<td>6.5 Conclusions</td>
</tr>
<tr>
<td>7. New Tools to Investigate Biological Diversity and Functional Consequences With Diederik van Tuinen</td>
</tr>
<tr>
<td>7.1 Genetic Markers</td>
</tr>
<tr>
<td>7.1.1 Small Ribosomal Subunit</td>
</tr>
<tr>
<td>7.1.2 Large Ribosomal Subunit</td>
</tr>
<tr>
<td>7.1.3 Definition of Operational Taxonomic Units</td>
</tr>
<tr>
<td>7.1.4 Mitochondrial Large Ribosomal Subunit</td>
</tr>
<tr>
<td>7.1.5 RNA Polymerase II</td>
</tr>
<tr>
<td>7.2 Functional Diversity</td>
</tr>
<tr>
<td>7.3 Conclusions</td>
</tr>
<tr>
<td>8. Management of Biological and Functional Diversity in Arbuscular Mycorrhizal Fungi Within Cropping Systems</td>
</tr>
<tr>
<td>8.1 Managing Indigenous AMF in Agroecosystems</td>
</tr>
<tr>
<td>8.1.1 Managing Indigenous AMF to Overcome Abliotic Stresses</td>
</tr>
<tr>
<td>8.1.2 Managing Indigenous AMF to Overcome Biotic Stresses</td>
</tr>
<tr>
<td>8.1.3 Discussion of the Results from the Case Studies</td>
</tr>
<tr>
<td>8.2 Opportunities to Develop ERM From Indigenous AMF Within the Cropping System</td>
</tr>
<tr>
<td>8.2.1 Criteria to Select Developer Plants</td>
</tr>
<tr>
<td>8.3 Some Final Comments</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>
Chapter 5 – Impacts on Host Plants of Interactions Between AMF and Other Soil Organisms in the Rhizosphere

Michael J. Goss Mário Carvalho Isabel Brito

https://doi.org/10.1016/B978-0-12-804244-1.00005-8

Abstract

There is a considerable evidence of both cooperation and synergism between groups of organisms concentrated around mycorrhiza rather than the rhizosphere of plants being inhabited by a very diverse population of competing organisms. A huge increase has taken place in the detailed understanding of the microbial environment surrounding plant root systems and of the processes involved in the establishment of the mycorrhiza symbiosis. It seems that if the interaction between microbes and plants is of particular interest to the development of a sustainable agriculture, the relationship is carefully choreographed through complex signaling systems. This development has also allowed a more holistic approach to the investigation of mycorrhiza and the possibility for optimizing the beneficial aspects of the symbiosis. Much of our detailed knowledge of the interaction between arbuscular mycorrhizal fungi (AMF), bacteria, and plants comes from legumes, members of the Fabaceae, which form symbiotic relationships with both AMF and nitrogen fixing "rhizobia." The three groups of organisms establish a tripartite interaction that may also involve additional endophytic partners. There is considerable similarity in the development of the symbiosis between the contrasting microbial symbionts – fungi and bacteria – and the host legume. Although there is no competition for infection sites between AMF and rhizobia, there can be resources from the host plant. The benefits from mycorrhiza in the tripartite interaction are enhanced when the host plant is colonized early, especially from an intact extraradical mycelium (ERM). Such AMF colonization can also stimulate more rapid formation of root nodules by rhizobia. An increased rate of photosynthesis or greater green leaf area can be triggered in the host plant in response to AMF colonization, which enhances the available carbon resources within the tripartite symbiosis. The interactions between AMF and other bacteria is less well understood but some of the species that are found in close association with AMF have been shown to enhance the formation of mycorrhiza on receptive hosts and most of the "mycorrhiza helper bacteria" have some beneficial effects on the development of the mycorrhizal host plant. The interactions with soil fauna, particularly grazing arthropods, do not suggest that AMF or their host plants are adversely affected by these activities.

Keywords

Soil biota; colonization mechanisms; chemical signaling; tripartite symbiosis; Fabaceae; rhizobia; mycorrhizal helper bacteria; agronomic practices

* With Luís Alho and Sabaruddin Kadir.

Copyright © 2017 Elsevier Inc. All rights reserved.