Mentzer index as a screening tool for iron deficiency anemia in 6-12-year-old children

Sri Lestari S. Alam1, Rini Purnamasari1, Erial Bahar2, Kemal Yakin Rahadiyanto3

Abstract

Background There is a high prevalence of iron deficiency anemia (IDA) in Indonesia. Iron deficiency anemia impairs the growth and development process in children. The reference standard to diagnose IDA is serum ferritin level. Since this test is expensive and rare not widely available, an inexpensive, simpler test is needed. The Mentzer index (mean corpuscular volume divided blood cell or MCV/RBC) has been used to identify hypochromic-microcytic anemia with good validity.

Objective To assess the validity of the Mentzer index for diagnosing IDA by comparing Mentzer indexes to serum ferritin and to define an optimal Mentzer index cut off point with good sensitivity and specificity.

Methods The study was a diagnostic test with cross-sectional design. Subjects were collected by multi-stage random sampling, from April to May 2013 at 18 elementary schools in Palembang. The study had a survey phase and diagnostic test phase. Subjects were aged 6-12 years with hypochromic-microcytic anemia. We examined complete blood counts to diagnose hypochromic-microcytic anemia, calculated Mentzer indexes, and measured serum ferritin levels of our subjects. We analyzed the validity of Mentzer index compared to serum ferritin level for diagnosing IDA.

Results There were 100 children in our study, consisting of 51 boys and 49 girls with a mean age of 9.1 (SD 2.02) years. From the receiver-operating curve (ROC) curve analysis, the area under the curve (AUC) was 91.9% for a Mentzer index cut off point of 13.51. Diagnostic test analysis revealed a sensitivity of 93%, specificity of 84%, and accuracy of 90%.

Conclusion Mentzer index has good validity as an inexpensive and simple screening for IDA in 6-12-year-old children with hypochromic-microcytic anemia.

Keywords IDA, Mentzer index, serum ferritin

Iron deficiency anemia (IDA) is a major public health problem in Indonesia. The high prevalence is of concern because untreated IDA may lead to impaired childhood growth and development, as well as increased susceptibility to infections.1,2 The 2007 Basic Health Research Report (Bakususda) reported that in South Sumatera, the IDA prevalence was 16.5%. Of the IDA cases, 70.1% had hypochromic-microcytic anemia. The IDA prevalence in school-aged children in Palembang was 33.7%.3

Iron deficiency anemia (IDA) is diagnosed by fulfilling the following criteria: hemoglobin level below normal according to age, peripheral blood smear reveals microcytic and/or hypochromic red blood cells, and hemoglobin level rises after two months of iron supplementation; in addition, one or more of the following criteria must be met: red cell distribution width (RDW) > 14% and Mentzer index > 13.5. The diagnostic tests widely used for IDA are complete blood count (CBC), serum iron (SI), total iron binding capacity (TIBC), and serum ferritin level.

From the Departments of Child Health1, Biostatistics2, and Clinical Pathology3, University of Samarinda Medical School/Dr. Moh. Hoesin Hospital, Palembang, Indonesia.

Reprint request to: Sri Lestari S. Alam, Department of Child Health, University of Samarinda Medical School/Dr. Moh. Hoesin Hospital, Jl. Sudirman Street, Ked. T. Palembang, Indonesia, Tel: +62-819-801-921, Fax: +62-711-328445, Email: alamsri@emersus.com.
Those examinations have mainly been used in clinical practice. However, these tests are expensive and not widely available in Indonesia. Because of the high prevalence of IDA in children, especially in school-aged children, early screening is needed to detect IDA. The screening tools should be easy-to-use, affordable, and sensitive enough to screen for IDA in school-aged children. Tests previously shown to be sensitive were Menzter, cytochrome, England-Fraser, Shive and Lal, and Srinivasan indexes. Among these tests, the Menzter index had the highest sensitivity and specificity. To date, there has been no report on using the Menzter index to screen for IDA in school-aged children in Palembang.

The aims of this study were to compare the Menzter index to the serum ferritin level test for diagnosing IDA in children aged 6-12 years with hypochromic-microcytic anemia, and to determine an optimal Menzter index cut off point with good sensitivity and specificity in this study population.

Methods

We conducted a diagnostic study with cross-sectional design from April to May 2013 at 18 elementary schools in Palembang. All 6-12 year-old elementary students who fulfilled inclusion criteria were obtained in this study. We did a multi-stage randomized sampling to obtained subjects from 18 elementary schools in 10 of 16 districts in Palembang. We estimated a required sample size of 120 subjects, based on 80% power and level of 0.05. The subject were 100 elementary students aged 6-12 years in Palembang who were found with hypochromic-microcytic anemia in their complete blood count (CBC) examination which fulfilled inclusion criteria. The inclusion criteria was agreed to follow this study and their parent had sign up the agreement. We excluded student with blood disease history (pale or icteric history), severe anemia, chronic infection (prolonged fever), inflammation diseases, severe malnutrition, and body temperature above 37.5°C, or blood specimens were lost.

Data collected included history, physical examination, and laboratory tests. An assistant and an author interviewed parents to obtain informed consent and the needed information. Data included age, gender, parental education level, socioeconomic status and child’s history of disease. Physical examinations were performed to assess for clinical manifestations of anemia, infection, inflammation, as well as anthropometric measurements comprising of weight (kg) and height (cm). Based on CDC 2000, nutritional status was classified as well-nourished (weight for height index <85%) or undernourished (weight for height index ≤85%). Blood specimens were obtained twice from subjects. The first blood specimen was used for CBC and Menzter index (MCV/RBC). Children with hypochromic-microcytic anemia provided a second blood specimen for serum ferritin measurements performed at a reference laboratory. Serum ferritin was measured by enzyme-linked immunosorbent assay (ELISA) using a Mini Vidas kit by bioMerieux.

Anemia was defined as having a hemoglobin level <11.5 g/dL (for 6-12 year-olds). Hypochromic-microcytic anemia was defined as anemia with MCV ≤77 fl and MCH < 25 pg. Iron depletion was defined as serum ferritin < 30 µg/L. Menzter index was calculated from MCV divided by RBC count; IDA was considered to be the diagnosis for those with Menzter index > 13. Clinical manifestations of anemia were considered to be palmar and or conjunctival palpebral pulse, chelitis, stomatitis, tongue mucous atrophy.

We performed validity tests (sensitivity, specificity, positive predictive value/PPV, negative predictive value/NPV, positive likelihood ratio, negative likelihood ratio, and accuracy) to assess the diagnostic value of Menzter index to screen for IDA in subjects with hypochromic-microcytic anemia. A receiver operating curve (ROC) was used to define the best Menzter index cut off point for IDA diagnosis.

Statistical analyses were performed by using the statistical product and services solutions (SPSS) version 15.0. This study was approved by the Ethics Committee of the Sriwijaya University Medical School and Dr. Moh. Hocain Hospital, Palembang, Indonesia.

Results

Subject recruitment process in this study consisted of two phases (Figure 1). In the first phase, we screened 474 children aged 6-12 years from 15 elementary schools. Four hundred and twenty children out of
them had clinical manifestation of anemia, and these children performed hemoglobin test which revealed 260 children with anemia. A complete blood count examination was performed in those anemic children and revealed 100 children with hypochromic microcytic anemia. All of these children were enrolled into this diagnostic study. Both, Menter index and serum ferritin level, were performed in all subjects.

Subjects' characteristics are shown in Table 1.

The CBCs revealed the following: mean hemoglobin of 9.9 (SD 0.97) g/dL, red blood cell (RBC) count 4.4 (SD 1.02) 10^6/mm^3, MCV 67.7 (SD 3.1) fl and MCH 21.3 (SD 2.52) pg. From the 100 subjects, there were 68 (68%) with serum ferritin level < 30 μg/Iron depletion) and 32 (32%) with ≥ 30 μg/Iron repletion).

Table 1. Baseline characteristics of subjects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n (100)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>Female</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-9 years</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>10-12 years</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Nutritional status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under nourished</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Well-nourished</td>
<td>49</td>
<td>49</td>
</tr>
</tbody>
</table>

Iron status profile according to sex, age and nutritional status is shown in Table 2.

<table>
<thead>
<tr>
<th>Serum ferritin level according to gender, age, and nutritional status</th>
<th>Mean (SD) μg/mL</th>
<th>Min-max. μg/mL</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>43.2 (38.79)</td>
<td>7.1-180.2</td>
<td>0.004</td>
</tr>
<tr>
<td>Female</td>
<td>42.9 (46.29)</td>
<td>7.1-186.6</td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-9 years</td>
<td>38.5 (49.86)</td>
<td>7.1-180.2</td>
<td>0.063</td>
</tr>
<tr>
<td>10-12 years</td>
<td>46.9 (42.30)</td>
<td>7.1-186.6</td>
<td></td>
</tr>
<tr>
<td>Nutritional status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well-nourished</td>
<td>45.0 (40.95)</td>
<td>7.1-180.2</td>
<td>0.700</td>
</tr>
<tr>
<td>Under nourished</td>
<td>41.1 (38.73)</td>
<td>7.1-186.6</td>
<td></td>
</tr>
<tr>
<td>"T-test"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Serum ferritin level according to gender, age, and nutritional status

Discussion

Iron deficiency anemia (IDA) is common in children, especially in school-aged children. It can impair many aspects of children's growth and development, such as by reducing immunity, cognitive function, as well as the function of multiple organs. We aimed to find a simple and affordable screening tool to identify IDA in an effort prevent these impairments. In clinical practice, serum ferritin level is the reference standard for IDA diagnosis. Some sensitive previously reported screening tools are the Menter, erythrocyte, iron-lead, Ferric and HbA1c indexes. Among these indexes, the Menter index reported
had highest sensitivity and specificity.¹

In our subjects, we found that 51 (51%) subjects were undernourished and 49 (49%) were well-nourished, indicating no significant differences between groups. Sreensari reported that in 5-14-year-old children of low socioeconomic background, the prevalence of anemia was 47.64% in well-nourished children and 38.62% in undernourished children, in several Indonesian cities.⁶

Serum ferritin level is a sensitive and reliable parameter to assess iron storage in normal individuals.⁸ Normal values of serum ferritin for children aged 6 months to 15 years are 12-140 μg/L. Interpretation of serum ferritin must be looked at closely. Ferritin is an acute-phase reactant that can become elevated in settings of inflammation, chronic infection and malignancy.⁹,¹⁰

In order to prevent false negatives for IDA using serum ferritin measurements, we excluded the children who suffered from infection and inflammation based on history-taking, physical examination and performing semi-quantitative C-reactive protein (CRP) exams, although we did not show these CRP value results. C-reactive protein (CRP) rises rapidly two hours after the onset of infection, reaches its peak at 48 hours, and declines after the resolution of acute-phase reactant, with a half-life of 18 hours.¹¹

In this study, we used a serum ferritin level of 30 μg/L as the reference standard for IDA. It was based on median value of serum ferritin level at age 6 months-15 years.⁵ In our study, we found 68 (68%) subjects with iron depletion (ID) and 32 (32%) subjects with iron sufficiency. Iron depletion (ID) differed in males and females, with female having lower mean serum ferritin than males. In contrast, Donnell et al. reported lower serum ferritin in male infants than in females.¹² Gender differences reportedly only affect ID in adolescents, as females are at higher risk due to menstruation and rapid growth. In developing countries, ID has also been attributed to chronic blood loss due to parasitic infections.¹³ A limitation of our study was that we did not perform stool examinations to detect parasitic infection.

Serum ferritin level reportedly differ according to age.¹⁴ However, we found no differences in mean serum ferritin level according to age groups, similar to that of Glader's study who found no differences in median
serum ferritin in children aged 6 months–15 years.

We constructed a ROC in order to choose the best Mntzer index cut-off point, which was ≥13.51. The sensitivity and specificity of this cut-off were 93% and 94%, respectively, with AUC of 91.9%, indicating that the Mntzer index was valid for use as a screening tool for IDA. A good screening tool is defined as having sensitivity ≥80%, despite the presence of low specificity.

In conclusion, Mntzer index is valid to use as a screen for iron deficiency anaemia in 6-12-year-old children with microcytic-anaemia using a Mntzer index value of ≥13.51 to screen iron deficiency anaemia.

Based on this study, we recommend using the Mntzer index to screen for IDA in children aged 6-12 years with microcytic-anaemia in community-based clinics. For more accurate diagnosis of IDA in hospitals, other tests should still be used for iron status examination and iron supplementation response. Lastly, to confirm the screening benefit of the Mntzer index, further studies with a larger and more diverse subjects should be undertaken.

Acknowledgments

We thank all the participating parents, children, teachers, pediatricians, and laboratory technicians. The following pediatricians contributed to this study: Dian Poupa, Siti. Bimantara, Silvia Timur and with critical comments, Tri and Firdaus also assisted with this study. We also extended our thanks to the laboratory staff of Mahamudiyah Hospital and Balai Besar Laboratorium Kesihatan in Palembang.

References