Journal Information

Title: Advance Journal of Food Science and Technology
ISSN: 2042-4868
E-ISSN: 2042-4876
Frequency: 12
Indexed in: Elsevier (Scopus), EMBASE, Engineering Village, Reaxys, DOAJ, Genamics JournalSeek, Open I-Gate, Chemical Abstract Service (CAS) (The American Chemical Society), Airtiti Library (Taiwan), Food Science & Technology Abstracts (FSTA)

Personal Subscription: 150 $ (Single Journal copy)
708 $ (1-Year)
1400 $ (2-Year)

Institutional Subscription: 300 $ (Single Journal copy)
1600 $ (1-Year)
2800 $ (2-Year)

How to submit manuscript:
Submit new manuscript to Maxwell Science Publication, firstly author should register his/her self at http://maxwellscl.com/register.php for personal account, as author successfully registered, can submit and track their manuscripts.

Authors are required to pay 300 $ handling fee for per submitted manuscript.

Please visit for author's instructions: http://maxwellscl.com/guid.php

Editorial Board Membership:
Open membership for researchers, Professors, Assistant Professors, PhD holders and scholars from all over the world. Submit your application for Editorial Board Membership (EBM) at http://maxwellscl.com/ebm.php.

About Journal:
A leading international science journal containing original research, peer scientific reviews of all basic and applied aspects of food science. The Editorial Mission of AIFST is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through respected peer-reviewed publications.

The journal focuses especially on experimental or theoretical research findings that have the potential for helping the food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed food products. Critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.

Aims & Scope:
AIFST as the premier international publication of articles that publish cutting-edge high quality original papers concerning fundamental research in the fields of food Science, Food chemistry and Toxicology, biochemistry, food Microbiology and safety, Food Engineering and Physical Properties technology Sensory and Nutritive Quality of food from the beginning of the food supply source to the dinner table of the consumers.

These subject areas include food safety and quality, raw material composition of food, food laws and regulations, ingredients and ingredient functionality, nutraceuticals, product formulation, sensory science and strategies, quality assurance, statistical process control and its contribution to food processing operations, food chemistry and toxicology, food engineering, Food microbiology, food authenticity and food traceability, nutritive qualities of food, Food storage, food distribution and marketing that associated to practical experiments designed to improve technical processes and impact our understanding of health.

The work described should be innovative either in the approach or in the methods used. The significance of the results either for the science community or for the food industry must also be specified.
<table>
<thead>
<tr>
<th>Sr.</th>
<th>Title</th>
<th>Authors</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Research Progress of Hot Air Drying Technology for Fruits and Vegetables</td>
<td>Ran Zhao and Tianhao Gao</td>
<td>160-166</td>
</tr>
<tr>
<td>02.</td>
<td>Study on the Model of Soil Water Resources Quantity in Baoding Plain</td>
<td>Sheng Lili and Cheng Wuqun</td>
<td>167-172</td>
</tr>
<tr>
<td>04.</td>
<td>Pneumatic Precise Radish Seeder</td>
<td>Xiaoshun Zhao, Huali Yu, Jinguo Zhang and Bin Zhang</td>
<td>180-184</td>
</tr>
<tr>
<td>05.</td>
<td>Single-phase Energy Metering Circuit Applied in Food System Based on ADE7755 Chip</td>
<td>Yu Qiong-Fang, Shi Zhina, Dong Yangmei and Dong Ai-Hua</td>
<td>185-188</td>
</tr>
<tr>
<td>06.</td>
<td>Using SIMULINK to Design and Simulate the Peanut Flattening Rolls</td>
<td>Tie Ye, Zhi-Wen Lu, Zhi-Guo Zhong, Chong-Nian Qu and Chun-Hua Ma</td>
<td>189-193</td>
</tr>
<tr>
<td>07.</td>
<td>Design and Implement of Food Enterprise Finance System Based on Big Data</td>
<td>Huaying Yao</td>
<td>194-198</td>
</tr>
<tr>
<td>08.</td>
<td>Research on Fruit's Fractal Image Based on the Characteristic Structure of Wavelet Coefficients</td>
<td>Xin Zhang and Mianrong Yang</td>
<td>199-201</td>
</tr>
<tr>
<td>09.</td>
<td>The Use of Water Seal Fermentor in Fish Fermentation of Bekasam</td>
<td>Basuni Hamzah</td>
<td>202-203</td>
</tr>
<tr>
<td>10.</td>
<td>Analysis of a Wireless Local Area Network Based on the Zigbee Technology Applied to Agro-food Safety Production and Monitoring</td>
<td>Hongpeng Zhu</td>
<td>204-208</td>
</tr>
<tr>
<td>11.</td>
<td>Study on the Negative Effects of Plants in Urban Green Planning Based on the Experts and Public's View</td>
<td>Wenting Wu</td>
<td>209-213</td>
</tr>
<tr>
<td>Sr.</td>
<td>Title</td>
<td>Page No.</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ji Chunxu, Yang Yongkang, Zhang Yanbin, Kang Tianhe, Ge Haijun and Wang An</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Causes Analysis and Countermeasures of Overlapping Food Products Processing Regulation-based on Overlapping Products Rights of Food Products Processing in China</td>
<td>218-221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jianya Gu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>A Study on Consumer Intentional Behavior of the Promotion of Green Food Mark and Green Food Hotel in Taiwan Using Quantiles Regression Analysis</td>
<td>222-227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ying-Chang Chen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Research on In-situ Disposal Technique of Food Production</td>
<td>228-232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ji Chunxu, Yang Yongkang, Zhang Yanbin, Guo Zefeng and Ge Haijun</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Editorial Board Members
Advance Journal of Food Science and Technology
© Maxwell Scientific Organization, 2016

Dr. Baljeet Singh Yadav, Assistant Professor, Department of Food Science and Technology, Ch. Devi Lal University, Sirsa, India

Technical Editor
Dr. Noranizan Mohd Adzahan, Faculty of Food Science and Technology, Universiti Putra Malaysia, Malaysia
Dr. Yasemin Sahin, Department of Food Engineering, Faculty of Agriculture, University of Uludag, Turkey

Reviewer
Mr. Onder Yildiz, Department of Food Engineering, Faculty of Engineering, Iğdır University, Turkey
Mr. Bayram Yurt, Iğdır University, Iğdır, Turkey
Ms Icy D'Silva, Department of Food Science Ontario Agricultural College University of Guelph, Canada
Ms Negin Sharafabati, 50 Stone Rd. University of Guelph, Canada
Mr. Kabore Adama, 06 BP 9682 Ouagadougou 06, Burkina Faso
Mr. G. Baskar, India
Mr. Sarkiyaya Shehu, Kaduna, Nigeria
Mr. John N. Kinyuru, P.O. Box 62000-00200, Kenya
Mr. Okonko Iheanyi Ommezruike, Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
Miss Sumaira Sahreen, Pakistan Museum of Natural History, Garden Avenue, Shakarpaur, Islamabad, Pakistan
Mr. Iranna Shraaappa Udachan, Faculty in Food Technology, Department of Technology, Shivaji University, Kolhapur, Maharashtra State, India
The Use of Water Seal Fermentor in Fish Fermentation of Bekasam

Basuni Hamzah
Department of Agriculture Technology, Faculty of Agriculture, Sriwijaya University, Jalan Raya Palembang-Indralaya Km. 32, Ogan Ilir, South Sumatera, 30662, Indonesia

Abstract: Fermentation of fresh water fish using water seal fermentor was studied. In the experiment, 3 concentration of salt were applied, namely, 2, 4 and 6%, respectively. The sample of products was observed every week until week 4. The result showed that the lowest final pH was at salt concentration of 4%. At the end of fermentation at concentration of 4%, Lactobacillus plantarum had been predominantly to grow. However, less salt concentration tended to be less selective of Lactic Acid Bacteria. Probably other than lactic acid bacteria also had been grown, inhibiting the growth of Lactobacillus plantarum. At the concentration of 6% there was predominantly growth of Leuconostos mesenteroides and less Lactobacillus plantarum had been grown. At low pH such as at salt concentration of 4%, the pH value was 4.12 will be much more preserved comparing to other two salt concentrations. The use of water seal fermentor would keep the temperature about 18°C. The temperature which lower than ambient temperature along with certain salt concentration would be the best way to select LAB microorganisms.

Keywords: Bekasam, fermented fish, lactic acid bacteria, Lactobacillus plantarum, Leuconostos mesenteroides

INTRODUCTION

In the province of South Sumatera, Indonesia much of the seasonally available fish is preserved by fermentation and fermented foods are consumed daily. Eating large quantity of rice is a cheap source of vegetable protein, amino acids and energy. Therefore, a vital individual foodstuff is either a salty side dish or a condiment that facilitates rice consumption. Fermented products are well suited for this, since they are simple to produce and cook, have a long shelf life (Caplice and Fitzgerald, 1999). It is no coincidence that the the region where fermented fish products are consumed overlap with the region of rice cultivation (Essuman, 1992).

South Sumatera province has various indigenous traditional fermented food products such as tempoyak, rusip, pedah and bekasam. Bekasam is a fermented fish product using fresh water fishes as main material. Cooked rice functions as substrate for the microorganisms, whereas salt is used as selective agent. The anaerobic fermentation takes place, traditionally, at least for one week in ambient temperature (Kimizuka et al., 1992). The resulting bekasam has the following superior characteristics, including excellent nutritive values, typical and pleasant sensory properties and safe to consume (Rahayu, 2010).

In the fact, bekasam is consumed by limited people in a few districts in South Sumatera province. Its surface is still smeared by rice rest, gives unhygienic impression. Consequently, the total acceptance of bekasam by consumer decreases. Traditional, local trader put bekasam fishes in open containers. This explains why contamination by molds occurred in high frequencies and shortened shelf life of bekasam.

Several investigations concerning microbiological aspects of bekasam have been carried out. A number of 28 Lactic Acid Bacteria (LAB) isolates were collected, purified and screened as well as partially, phenotypically identified. They were characterized by cell morphologies (cocci or rod), Gram positive and catalase-negative. A differential analysis suggested 5 genera of predominant LAB namely Lactobacillus, Streptococcus, Pediococcus, Enterococcus and Tetragenococcus (Wijaya et al., 2008).

The term Bekasam is used here to describe the product of fresh water that are processed with salt to cause fermentation and thereby to prevent putrefaction. Although the same phenomenon occurs with salted fish product. In the fermentation of Bekasam, fresh water fish is used and addition of some salt usually about 10%, the addition also of boiled rice, the put in the big dish made from dried mud earth. In this research, the fermentation of fish using water seal fermentor, instead.

MATERIALS AND METHODS

Fresh water fish is used as mainly material. Salt is added in the percentage of 2, 4 and 6%, respectively (w/w basis) and also cooked rice is added as much as 2%. The water-sealed fermentor set up is shown in Fig. 1.
Sample of fish fermentation products were taken every once a week until 4 weeks. The parameter observed was pH oh the samples.

RESULTS AND DISCUSSION

The result of this study is shown in Table 1. The data showed that all three salt concentration the pH decreases as the fermentation continued until week 4. Salt concentration of 2% had pH of 6.82 (week 1), 6.01 (week 2), 5.91 (week 3) and 5.62 (week 4). At salt concentration of 4% had pH of 6.15 (week 1), 5.43 (week 2), 4.12 (week 3) and 5.62 (week 4). And at salt concentration of 6% had pH of 6.05 (week 1), 5.65 (week 2), 5.34 (week 3) and 5.03 (week 4). The lowest final pH was at salt concentration of 4%. At the end of fermentation at concentration of 4%, Lactobacillus plantarum had been predominantly to grow. However, less salt concentration tended to be less selective of Lactic acid bacteria. Probably other than lactic acid bacteria also had been grown, inhibiting the growth of Lactobacillus plantarum. At the concentration of 6% there was predominantly growth of Leuconostos mesenteroides and less Lactobacillus plantarum had been grown. At low pH such as at salt concentration of 4%, the pH value was 4.12 will be much more preserved comparing to other two salt concentrations. The use of water seal fermentor would keep the temperature about 18°C. The temperature which lower than ambient temperature along with certain salt concentration would be the best way to select LAB microorganisms.

CONCLUSION

The use of water seal fermentor along with the addition of salt concentration of 4% had been the best way to preserve fish fermentation of Bekasam at least for 4 weeks with the final pH of 4.12.

REFERENCES

Rahayu, E.S., 2010. Lactic acid bacteria and their role in food and health: Current research in Indonesia. Proceeding of the 5th International Conference of Indonesian Society for Lactic Acid Bacteria (IC-ISLAB), November 13.