INTERNATIONAL CONFERENCE ON PHYSICS AND ITS APPLICATIONS: (ICPAP 2011)

- **Conference date**: 10–11 November 2011
- **Location**: Bandung, Indonesia
- **ISBN**: 978-0-7354-1055-8
- **Editors**: Khairul Basar and Sparisoma Viridi
- **Volume number**: 1454
- **Published**: 20 June 2012

Front Matter

[+ VIEW DESCRIPTION]

Preface: International Conference on Physics and Its Applications (ICPAP 2011)

Khairul Basar and *Sparisoma Viridi*

Source: AIP Conf. Proc. 1454, 1 (2012); http://dx.doi.org/10.1063/1.4730673

[+ VIEW DESCRIPTION]

INVITED PAPERS

- **Direct observation of local chemical surface properties by scanning tunneling microscopy**
 Harry E. Hoster

 Source: AIP Conf. Proc. 1454, 9 (2012); http://dx.doi.org/10.1063/1.4730676

 [+ VIEW DESCRIPTION]

- **Accurate force measurement using optical interferometer**
 Yusaku Fujii

 [+ VIEW DESCRIPTION]
- **Appropriate observables for investigating narrow resonances in kaon photoproduction off a proton**

 T. Mart

 Source: AIP Conf. Proc. 1454, 19 (2012); http://dx.doi.org/10.1063/1.4730678

- **ASTROPHYSICS AND HIGH ENERGY PHYSICS**

- **The characteristics of solar wind parameters during minimum periods of solar cycle 24 and impact on geoeffectiveness**

 Dhani Herdiwijaya

 Source: AIP Conf. Proc. 1454, 25 (2012); http://dx.doi.org/10.1063/1.4730679

- **Morning twilight measured at Bandung and Jombang**

 Eka Puspita Arumaningtyas, Moedji Raharto and Dhani Herdiwijaya

 Source: AIP Conf. Proc. 1454, 29 (2012); http://dx.doi.org/10.1063/1.4730680

- **The surface distribution of solar energetic particles on the Earth and Southern Atlantic Anomaly**

 Febi Trihermanto and Dhani Herdiwijaya

 Source: AIP Conf. Proc. 1454, 32 (2012); http://dx.doi.org/10.1063/1.4730681

- **The possible range arc of vision for Aphelion and Perihelion group of Hilal visibility**

 Moedji Raharto and Novi Sopwan

 Source: AIP Conf. Proc. 1454, 35 (2012); http://dx.doi.org/10.1063/1.4730682

- **Population density effect on radio frequencies interference (RFI) in radio astronomy**

 Roslan Umar, Zamri Zainal Abidin, Zainol Abidin Ibrahim, Mohd Saiful Rizal Hassan, Zulfazli Rosli and Zety Shahrizat Hamidi

 Source: AIP Conf. Proc. 1454, 39 (2012); http://dx.doi.org/10.1063/1.4730683

- **Indication of radio frequency interference (RFI) sources for solar burst monitoring in Malaysia**
Z. S. Hamidi, Z. Z. Abidin, Z. A. Ibrahim and N. N. M. Shariff

Source: AIP Conf. Proc. 1454, 43 (2012); http://dx.doi.org/10.1063/1.4730684

Nonminimal derivative coupling in five dimensional universal extra dimensions and recovering the cosmological constant

Agus Suroso, Freddy P. Zen and Bobby E. Gunara

NUCLEAR PHYSICS AND APPLICATIONS

The assessment of consistency using penetrometer and apparent diffusion coefficient (ADC) value using diffusion weighted magnetic resonance imaging (DW-MRI) from polyvinyl alcohol (PVA) formed by freezing-thawing cycle

Yanurita Dwihapsari, Dita Puspita Sari and Darminto

Determination of Cu, Zn and Pb in scalp hair from a selected population in Penang using the XRF method

Khalid Saleh Ali Aldroobi, A. Shukri, Eid Mahmoud Eid Abdel Munem, Sabar Bauk, Mohammad Wasef Marashdeh and Yahye Abbas Amin

Source: AIP Conf. Proc. 1454, 57 (2012); http://dx.doi.org/10.1063/1.4730687

Impact of curved surface for clinical plan verification in intensity modulated radiation therapy using 2d array I'mRT MatriXX

Saleh Alashraha, Sivamany Kandaiya and Soon Keong Cheng

Computational study: Reduction of iron corrosion in lead coolant of fast nuclear reactor

Artoto Arkundato, Zaki Su’ud, Mikrajuddin Abdullah and Widayani

Design of small gas cooled fast reactor with two region of natural Uranium fuel fraction
Menik Ariani, Zaki Su’ud, Abdul Waris, Khairurrijal, Fiber Monado, Hiroshi Sekimoto and Sinsuke Nakayama

+ VIEW DESCRIPTION

- Preliminary study on direct recycling of spent BWR fuel in BWR system

A. Waris, Sumbono, Dythia Prayudhatama, Novitrian and Zaki Su’ud

+ VIEW DESCRIPTION

- Influence of void fraction on plutonium recycling in BWR

R. Surbakti, A. Waris, K. Basar, S. Permana and R. Kurniadi

+ VIEW DESCRIPTION

- COMPUTATIONAL METHODS IN PHYSICS

- Inverse scattering pre-stack depth imaging and it’s comparison to some depth migration methods for imaging rich fault complex structure

Bagus Endar B. Nurhandoko, Indriani Sukmana, Syahrul Mubarok, Agus Deny, Sri Widowati and Rizal Kurniadi

+ VIEW DESCRIPTION
Design of small gas cooled fast reactor with two region of natural Uranium fuel fraction

Menik Ariani, Zaki Su'ud, Abdul Waris, Khairurrijal, Fiber Monado et al.

Citation: AIP Conf. Proc. 1454, 69 (2012); doi: 10.1063/1.4730690
View online: http://dx.doi.org/10.1063/1.4730690
View Table of Contents: http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1454&Issue=1
Published by the American Institute of Physics.

Additional information on AIP Conf. Proc.
Journal Homepage: http://proceedings.aip.org/
Journal Information: http://proceedings.aip.org/about/about_the_proceedings
Top downloads: http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS
Information for Authors: http://proceedings.aip.org/authors/information_for_authors
Design of Small Gas Cooled Fast Reactor with Two Region of Natural Uranium Fuel Fraction

Menik Ariani*a,b, Zaki Su’ud,a Abdul Waris,a Khairurrijal,a Fiber Monado*a,b, Hiroshi Sekimoto*c, Sinsuke Nakayama*c

aDepartment of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134, Indonesia,
bPhysics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan, Indonesia
‘Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-17, Ookayama, Meguro-ku 152-8550, Japan
*E-mail: menikariani@students.itb.ac.id

Abstract A design study of small Gas Cooled Fast Reactor with two region fuel has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region fuel i.e. 60% fuel fraction of Natural Uranium as inner core and 65% fuel fraction of Natural Uranium as outer core. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 filled by fresh Natural Uranium. This concept is basically applied to all regions in both cores area, i.e. shifted the core of jth region into j+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium on each region-1. The burn-up calculation is performed using collision probability method PIJ (cell burn-up calculation) in SRAC code which then given eight energy group macroscopic cross section data to be used in two dimensional R-Z geometry multi groups diffusion calculation in CITATION code. This reactor can results power thermal 600 MWh with average power density i.e. 80 watt/cc. After reactor start-up the operation, furthermore reactor only needs Natural Uranium supply for continue operation along 100 years. This calculation result then compared with one region fuel design i.e. 60% and 65% fuel fraction. This core design with two region fuel fraction can be an option for fuel optimization.

Keywords: two region, fuel fraction, Natural Uranium, Modified CANDLE

PACS: 28.20.Gd

INTRODUCTION

The Natural Uranium fuel cycle remains an attractive option for current and prospective reactors, for a variety of reasons. The fuel itself is simple, consisting of only seven basic components, and can be easily manufactured in many countries. The use of natural uranium avoids a requirement for Uranium-enrichment capability. It also avoids the creation of depleted-Uranium enrichment-plant.

In the present paper, a Modified CANDLE burn-up calculation for small and long life Gas Cooled Fast Reactor was described. Gas Cooled Fast Reactor included in the Generation-IV (GEN-IV) reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. These innovative reactor systems aim at the sustainability, safety and reliability, economics and proliferation resistance and physical protection of the future nuclear fuel cycle.

Conceptual design GCFCR with Helium coolant which can be continuously operated by supplying Natural Uranium without fuel enrichment plant or fuel reprocessing plant. The CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) burn-up strategy can be applied to several reactors, when the infinite neutron multiplication factor of fuel element of the reactor changes along burn-up as the followings [1,2].

In this case CANDLE burn-up strategy is slightly modified by introducing discrete regions. The reactor cores are subdivided into several parts with the same volume in the axial directions. The previous study shows that Modified CANDLE concept was...
successfully applicable to long-life fast reactor with Natural Uranium as fuel cycle input [4]. This technology allows for the reactor which has been operating, furthermore it only need supply Natural Uranium as fuel cycle.

DESIGN CONCEPT

The reactor core is that part of the reactor where the nuclear fuel assemblies are located and the fission reaction takes place. Design was optimized by division of core into two regions with different fuel fraction. Inner core with 65% fuel fraction and outer core with 65% fuel fraction. Detail specification for the reactor design given by Table 1.

TABLE 1. Reactor Core Design Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>600 MWth</td>
</tr>
<tr>
<td>Fuel material</td>
<td>Nitride- Nat. Uranium</td>
</tr>
<tr>
<td>Cladding material</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Coolant material</td>
<td>Helium</td>
</tr>
<tr>
<td>Inner core volume fraction</td>
<td>60% : 10% : 30%</td>
</tr>
<tr>
<td>Outer core volume fraction</td>
<td>65% : 10% : 25%</td>
</tr>
<tr>
<td>Fuel pin diameter</td>
<td>1.4 cm</td>
</tr>
<tr>
<td>Active core radial width</td>
<td>120 cm</td>
</tr>
<tr>
<td>Active core axial height</td>
<td>350 cm</td>
</tr>
<tr>
<td>Radial Reflector width</td>
<td>50 cm</td>
</tr>
<tr>
<td>Sub cycle length</td>
<td>10 years</td>
</tr>
</tbody>
</table>

In this design the active reactor core are divided into two region fuel, inner core was contains Natural Uranium with 60% fuel fraction and outer core with 65% fuel fraction (Fig. 1). Both cores area were subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. In Modified CANDLE burn-up scheme strategy (Fig. 2), the fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the region-1 is filled by fresh natural Uranium fuels [4]. This concept is basically applied to all regions in fuel cores area, i.e. shifted the core of i-th region into i+1 region after the end of 10 years burn-up cycle. Furthermore for the next cycles, we will add only Natural Uranium on region-1, so that this reactor will be able to operate until 100 years with only nitride Natural Uranium as fuel cycle input.

CALCULATION METHOD

The calculation is performed using SRAC code system (SRAC-CITATION system) with JENDL-3.2 nuclear data library [3]. At the beginning we assume the power density level in each region and then we perform the burn-up calculation using the assumed data. The burn-up calculation is performed using cell burn-up in SRAC code which then given eight energy group macroscopic cross section data to be used in two dimensional R-Z geometry multi groups diffusion calculation. The average power density in each region resulted from the diffusion calculation is then brought back to SRAC code for cell burn-up calculation. This iteration is repeated until the convergence is reached.
RESULT

The results of calculation with modified CANDLE strategy for 100 years burn-up are presented as follows. Fig. 3 shows effective multiplication in sub-cycle. For the reactor with 60%, 65% and two region fuel (60/65)%, k_{eff} value always above 1.0. It can be indicates that the reactor can operate 10 years without refueling.

![Effective multiplication factor in sub-cycle](image)

FIGURE 3. Effective multiplication factor in sub-cycle

Table 1 shows the initially composition material that is atomic percent of Plutonium-239 in core region (both inner core and outer core). After reactor start up the operation with this condition, furthermore reactor only needs Natural Uranium supply for continue operation until 100 years burn-up.

<table>
<thead>
<tr>
<th>Region</th>
<th>% of Pu-239</th>
<th>Region</th>
<th>% of Pu-239</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region-1</td>
<td>0</td>
<td>Region-1</td>
<td>0</td>
</tr>
<tr>
<td>Region-2</td>
<td>2.0</td>
<td>Region-2</td>
<td>1.6</td>
</tr>
<tr>
<td>Region-3</td>
<td>3.0</td>
<td>Region-3</td>
<td>2.2</td>
</tr>
<tr>
<td>Region-4</td>
<td>4.4</td>
<td>Region-4</td>
<td>2.7</td>
</tr>
<tr>
<td>Region-5</td>
<td>6.5</td>
<td>Region-5</td>
<td>3.8</td>
</tr>
<tr>
<td>Region-6</td>
<td>8.1</td>
<td>Region-6</td>
<td>5.6</td>
</tr>
<tr>
<td>Region-7</td>
<td>8.2</td>
<td>Region-7</td>
<td>7.3</td>
</tr>
<tr>
<td>Region-8</td>
<td>7.5</td>
<td>Region-8</td>
<td>8.2</td>
</tr>
<tr>
<td>Region-9</td>
<td>6.6</td>
<td>Region-9</td>
<td>8.3</td>
</tr>
<tr>
<td>Region-10</td>
<td>6.0</td>
<td>Region-10</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Table 2 shows the initially composition material that is atomic percent of Plutonium-239 in core region (both inner core and outer core). After reactor start up the operation with this condition, furthermore reactor only needs Natural Uranium supply for continue operation until 100 years burn-up.

FIGURE 4. k-infinite Change during Burn-up

FIGURE 4. k-infinite Change during Burn-up

FIGURE 5. Burn-up Level change during Burn-up
Figure 6 shows the axial power distribution for all core configurations. Average power density for core with 60% fuel fraction is 75.7 watt/cc and core with 65% fuel fraction is 75.8 watt/cc. The value of average power density for core with two region fuel (60/65)% was higher i.e. 80.0 watt/cc.

Figure 7 shows the power distribution in axial direction. It indicates that in 10 years operation there was some shift in the density resources toward more less of burn-up level.

CONCLUSION

Design of Small and Long-life Gas Cooled Fast Reactor with Helium coolant has been investigated. The reactor with thermal power 600 MWth was designed for 100 years long-life. Using Modified CANDLE burn-up strategy, a reactor start up the operation, furthermore this reactor only needs Natural Uranium supply for continue operation along 100 years without refueling in sub-cycle. optimizations performed by the division of fuel core i.e inner core (60% fuel fraction) and outer core (65% fuel fraction). This core configuration was result average power density value higher than single core without division. The average power density was 80.0 watt/cc.

REFERENCES