The International Symposium on Agricultural and Biosystem Engineering

Proceedings
The International Symposium on Agricultural and Biosystem Engineering 2013
Improving The Role of Agricultural and Biosystem Engineering Toward Food & Energy Self-Sufficiency and Sustainable Agriculture
AUGUST 28-29 2013
YOGYAKARTA, INDONESIA
PROCEEDINGS

Organized by:

Departement of Agricultural Engineering
Faculty of Agricultural Technology
Universitas Gadjah Mada

Perhimpunan Teknik Pertanian
PERTEKA
Cabang Yogyakarta

Supported by:

Korean Society for Agricultural Machinery

Sponsored by:

WINGFOOD

한국농업기계학회
Message from The Chairperson Of Isabe 2013

It is my honor to welcome you to the International Symposium on Agricultural and Biosystem Engineering 2013. Thank you all for gather here today at the Faculty of Agricultural Technology for attending this important meeting. The ISABE 2013 is held in August 28-29 organized by Department of Agricultural Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada and the Indonesian Society of Agricultural Engineering (PERTETA). The theme of ISABE 2013 is “Improving the role of agricultural and biosystem engineering toward food & energy self-sufficiency and sustainable agriculture”. The objectives of the symposium are to disseminate knowledge, to promote research and development, to obtain the latest information, as well as to exchange technical information in agricultural and biosystem engineering innovation. Moreover, the symposium will provide opportunity to strengthen networking among Indonesia and international academia, government and industries. The meeting will feature a series of keynote speech in plenary sessions, presentations in technical sessions, poster sessions, cultural night, as well as excursion.

I am very pleased to welcome all the guest speakers: Prof. Dongil Chang (Chungnam National University, Korea), Dr. Takashi Okayasu (Kyushu University, Japan), Prof. Vinod Jindal (Mahidol University, Thailand), Dr. Patrick van Schijndel (Eindhoven University of Technology, Netherlands), Prof. Kenan Pelin (Selcuk University, Turkey), Prof. Fajrettin Korkmaz (Ataturk University, Turkey), as well as Dr. Lilik Sutiarso (Universitas Gadjah Mada, Indonesia). And joining us to deliver a congratulatory speech is Prof. Seung-je Park (President of Korean Society for Agricultural Machinery, KSAM). Thank you very much for all of you for your contribution in this symposium.

I am also pleased to greet participants of 92 selected papers, among them are 8 papers from Korea, 6 from Japan, 1 from Taiwan, 1 from Austria, 1 from Thailand, and the remaining 75 papers are from Indonesia, as well as 3 posters. For delegates who do not present papers, thank you for your participants. I hope you can enjoy all the agenda.

I would like to express my sincere gratitude to all colleagues, sponsors, organizing committee, steering committee for their support and cooperation for making this event successfully performed.

Finally, thank you again for your participation and welcome to the ISABE 2013 meeting.

Chairperson of ISABE 2013
Dr. Rudiati Evi Masithoh
 ISBN: 978-602-14315-0-4

Editor:
Lilik Sutiarso
Murtiningrum

Proceedings
The International Symposium on Agricultural and Biosystem Engineering 2013
Theme:
Improving The Role of Agricultural and Biosystem Engineering
Toward Food & Energi Self-Sufficiency and Sustainable Agriculture

© Published by:
Jurusan Teknik Pertanian, Fakultas Teknologi Pertanian
UNIVERSITAS GADJAH MADA

Copyright Law Protected
Don’t to quote, reproduce and translate some or all of these books without the permission of the publisher

First Edition: 2013
ISBN: 978-602-14315-0-4
MAIN PAPER

Informatization Agriculture in Japan
Author: Takashi Okayasu

A-1
Design of Thermal Conductivity Apparatus Based on Transient-state Radial Cylinder Method
Authors: Bambang Dwi Argo, Wahyunanto A. Nugroho, Yoes B. Pristya and Ubaidillah

A-2
Effect Extraction Method of Composition Fatty Acid Dieng Carica Seeds Oil (Carica candamarcensis HOK) as Edible Oil
Authors: Bambang Dwi Argo, Wahyunanto A. Nugroho, Yoes B. Pristya and Ubaidillah

A-3
Adsorption Equilibrium Studies of Bio-Based Butanol from Fermentation Broth by Immobilized of Potato Starch Sorbent
Authors: Dina Wahyu, Tsair-Wang Chung

A-4
Quality Review of Three Types of Mangoesteen Using Ultrasonic Waves
Authors: Emmy Darmawati, Amir Hamzah

A-5
Influence of Air Flow Rate on Drying Characteristics of Clove
Authors: Junaedi Muhidong, inge Scorpi Tulliza and Ishak

A-6
Performance Test of Equipment and Machines of Banana Miller for Mechanization Technology Development of Banana Processing in South Kalimantan Province
Authors: Retno Endrasari, Susy Lesmayati

A-7
Continuous Dehumidification of Organic Sorbent Powder in Two Connected Fluidized Beds with a Cooling and a Heating Pipe
Authors: Sukmawaty, Syahrul

A-8
Method of Waxing on Quality and Shelf-life of Semi-cutting Mangosteen in Low Temperature Storage
Authors: Usman Ahmad, Emmy, Darmawati, and Nur Rahma Refilia

A-9
Acidified Sodium Chlorite Treatments for Improving Shelf-life of Unripe Shredded Papaya
Authors: Vinod K. Jindal, Pompailin Sinrat and Nipon Chamchan
A-10 Fighting for Malnutrition in Indonesia by Production of Artificial Rice Based on Arrow Root and Cassava with Addition of Cowpea Authors: Danial Fatchurrahman, Wenny Bekti Sunarharum, Anugerah Dany Priyanto, Fathy Fasial Bahanan read

A-11 Product Features and Cost Analysis of MOCAS (Modified Cassava Starch) Based Bakery Products Authors: Darmawan Ari Nugroho, Ibnu Wahid FA read

A-12 Fuel Feeding Rate Controlling Base on The Temperature Distribution Simulation on Rosella Pod (Hibiscus sabdariffa linn) Drying Process Authors: Dyah Wulandani, Leopold Oscar Nelwan, I Made Dewa Subrata read

A-13 Identification of Determinant Factors in Processing and Technology: A Case Study of Fruit Processing Industries (FPIs) in Indonesia Authors: Ida Bagus Suryaningrat read

A-14 Profile of The Peanut Moisture Content During Deep Bed Drying Authors: Ansar, Sirajuddin, Widhiantari read

A-15 Effect Lindak Cacao Fruit Maturity (Theobroma Cacao F.) With High Level of Polyphenols as Antioxidants Authors: Jumriah Langkong and Mulyati M. Thahir read

A-16 Study of Active Packaging System by Using Ethylene Adsorber to Prolong The Storage Life of Avocado Fruits (Perseaamericana Mill) Authors: Lilik Pujantoro, andi Nurfaidah and Yadi Haryadi read

A-17 The Development of Technology Bundle in Packaging of Export Quality of Mangosteens' Transportation Authors: Ni Luh Yulianti and Gede Arda read

A-18 SynThesis of Chitosan-Ag+ as Antibacterial Material Authors: Shinta Rosalia Dewi, Sri Juari Santosa and Dwi Siswanta read

A-19 Development of Coffee Beans Caffeine Extraction Using Pressure and Temperature Controllable Reactor Authors: Sukrisno Widyotomo read
A-20
Optimization of The High Refined Cellulose Process Production from The Sago Fiber Waste by a Delignification Process Involving Nitric Acid, Sodium Hydroxide and Hydrogen Peroxide as The Delignificating Agent
Authors : Supranto
Sub-Theme : Energy and Agricultural Machinery

B-1
Technical Analysis and Performance Test of A Small Scale Banana Milling Machine
Authors : Ade M Kramadibrata, Totok Herwanto and Boy Ricardo

B-2
Design of Measurement System Water Content in Pressurized Chamber Without Disturbing The Process
Authors : Anang Lastriytanto, Sudjito S, Roedy S and Sumardi

B-3
Design of Farm Road Construction at The Tertiary Plot of Paddy Field
Authors : Asep Sapei, Erizal, and Tatang Sumarna

B-4
Aerodynamics Properties of Castor Bean and It's Application for Blower System at Ricinus Castor Bean Hulling Machine
Authors : Cahyawan Catur Edi Margana, Rahmat Sabani, and Baharuddin

B-5
The Effect of Sugarcane Litter Compost to Soil Physical Mechanical Properties and Ratoon Sugarcane Performance
Authors : Iqbal, Tineke Mandang, E. Namaken Sembiring, M.A. Chozin

B-6
Tillage Characteristics of Rotavators in Famland Condition of Korea
Authors : Dae-Cheol Kim, Ju-Seok Nam, Myoung-Ho Kim and Dae-Chun Kim

B-7
Feasibility Analysis of Palm Oil Mill Effluent Utilization as a Source of Electrical Energy
Authors : Suprihatin, E. Gumbira-Sa’id, O. Suparno, D.O. Suryanto and Sarono

B-8
Potential Production of Agricultural Byproducts and The Economic
Feasibility of Rice Straw as a Feedstock for Bioethanol in Korea
Authors: Yeonghwan Bae, Kidong Park, Keum Joo Park

Study on Oil Palm Fresh Fruit Bunch Bruise in Harvesting and Transportation as a Function to Quality
Authors: Andreas Wahyu Krisdiarto and Lilik Sutiarso

Application of KUBOTA DC-60 for Paddy Wet Field Harvesting
Authors: Ledyta Hindiani and Gatot Pramuhadi

Engineering Characteristics and Potential Energy of Oil Palm Fruit Bunches Harvesting
Authors: Wawan Hermawan, Desrial, Muhammad Iqbal Nazamuddin

Design of Iron Wheel of a Light Tractor for Crop Maintenance in Unconsolidated Paddy Field
Authors: Radite P.A.S, I. W. Astika, D. M. Subrata and A. Azis

Design and Performance Test of Metal Kiln Venturi Drum Type for Coconut Shell Carbonization
Authors: S. Endah Agustina and Nurul Hasanah

Design of Sugarcane (Saccharum officinarum L) Cutting Machine for Seedling Preparation with Bud-chip Method
Authors: Siswoyo Soekarno, Luqman Budi Setiawan and Askin

The Clay Content Effect on The formation of Shallow Mole Drainage: An Experimental Study
Authors: Siti Suharyatun, Bambang Purwantana, Abdul Rozaq and Muhjidin Mawardi

The Usage of Shaft to Shaft Transmission for Rotary Saw Crusher for Paddy Straw
Authors: Tri Tunggal, Tamaria Panggabean and Hilda Agustina
Functional Interaction Between Pressure and Soil Sinkage for Terrestrial Robotic Vehicles
Authors : Lenny Saulia

B-18
Design a Mechanical Device for Making Briquettes
Authors : Wiludjeng Trisasiwi, Agus Margiwiyatno, Petrus Hary Tjahja Soedibyo

B-19
A Method of Workload Application for Tractor Transmission
Authors : Su Chul Kim, Yoo Joo Kim, Seung Jae Park

Sub-Theme : Land and Water Resources Engineering

C-1
Water Conservation Concern in Surakarta, Indonesia
Authors : Agus Suyanto

C-2
Influence of Increasing Rain due to Climate Change on Forest Slope Stability in Aso City, Kumamoto Prefecture, Japan
Authors : Aril Aditian and Tetsuya Kubota

C-3
Evaluation on Land Use Toward The Environment Support in Ponorogo Regency
Authors : Bambang Rahadi, Tunggul Sutan Haji, Euis Elih Nurlelih and Novia Lusiana

C-4
The Potential and Constraints of Agricultural Engineering Application in Tidal Lowlands Support Sustainable Food Crops Farming (A Case Study of former Transmigration Area of Banyuasin Regency, South Sumatra Province, Indonesia)
Authors : Husin, Robiyanto H. Susanto, Benyamin Lakitan, Ardiyan Saptawan and M. Yazid

C-5
The Effect of Elevation on Planting Calendar in West Timor Using Agricultural Rainfall Index (ARI) Method
Authors : Jonathan E.Koehuan and Juli Setyanto

C-6
Analysis of Soil Erosion on The Catchment Area of
Musi Hydro-Power Plant, Bengkulu Province
Authors: Khairul Amri, A. Halim, Ngudiantoro and M. Faiz Barchia

C-7
Distribution and Characteristic of Landslides in Volcanic Mountains of West Java, Indonesia
Authors: Ngadisih, Ryuichi Yatabe, Netra P. Bhandary and Ranjan K. Dahal

C-8
Sediment Related Disasters Induced by Intense Precipitation During Hurricane Events in Nuevo Leon, Mexico
Authors: Laura Sanchez-Castillo, Tetsuya Kubota, Israel Cantu-Silva and Hasnawir

C-9
Prediction of Water Balance to Determine Growing Period of Sugarcane (Saccharum officinarum L.) in Kalasan, Sleman
Authors: Kamelia Dwi Jayanti, Putu Sudira and Bambang Hendro Sunarminto

C-10
Effect of Silica Extracted from Sugar Cane Bagasse and Compost to Soil’s Physical Properties Under Rainfall Simulator
Authors: Musthofa Lutfi, Hafidz Yuswandhito U and Wahyunanto Agung N

C-11
Determining The Relationships Between Soil Electrical Conductivity and Some Soil Properties Measured by The Real-Time Soil Sensor (RTSS)
Authors: Ni Nyoman Sulastri, Sakae Shibusawa and Masakazu Kodaira

C-12
Implementing a Minimum Environmental Flow and Its Effects on Water Management at Sekampung Irrigation Area
Authors: Endro Prasetyo Wahono, D. Legono and Istiarto and B.

C-13
Constraint and Accelerating Factors of Hydrology and Water Resources in Monsoon Region for The Development of Irrigated Paddy Land: A Case Study At Bali Island
Authors: Sahid Susanto
C-14
Development of Bio-System Management for Land and Water Conservation of Watershed
Authors : Sahid Susanto

C-15
Prospectives of Water Table Management on Reclaimed Tidal Lowlands With Subsurface Drainage Systems (Case Study of Banyu Urip of Banyuasin, South Sumatera Province. Indonesia)
Authors : Erry Koriyanti, Robiyanto H. Susanto, Dedi Setiabudidaya, Ngudiantoro and F.X. Suryadi

C-16
Load Force of Water in Tubes on Irrigation Water-Scooped Wheel
Authors : Mohammad Agita Tjandra and Apri Roma Habeahan

C-17
Organic Mulching for Soil Water Conservation
Authors : Muhjidin Mawardi

C-18
Performance of Rotary Sprinkler on The Dry Land
Authors : Sitti Nur Faridah, Daniel Useng, Mahmud Achmad, Aryuni

C-19
Soil Conservation Strategy for Potentially Landslide Areas in Gintung Sub-Watershed, Central Java Province, Indonesia
Authors : Nur Ainun Pulungan, Chandra Setyawan, Sekar Jatiningtyas, Junun Sartohadi

Sub-Theme : Environmental Engineering

D-1
Water Quality (BOD5 and COD) Mapping of West Tarum Canal as Water Resources for Irrigation
Authors : Mouli De Rizka Dewantoro and Yan El Rizal U.D.

D-2
Characteristic of Friction and Shading Rate for Al-Screen Curtain
Authors : Wonsik Choi, Sunmi Choi, Kyungran Kim, Changju Lee, Jaeyoung Byun,
D-3
Utilization of Cassava Peel as Feed by Fermentation (Zero Waste Application in Mocaf industry)
Authors: Andrew Setiawan, Gensi Ginting, Sukatiningsih, Achmad Subagio

D-4
Utilization of Tofu Liquid Waste as Growing Media for Hair Worm (Tubifex sp.) to Reduce Environmental Pollution
Authors: Arief Muammar, Aditya Mahendra, Astia R. Safitri

D-5
Cultivation of Chlorella Sp. in Tofu Processing Wastewater Using Raceway Recirculated Pond Bioreactor
Authors: Wahyunanto A. Nugroho, Mustofa Lutfi

D-6
Effect of Transient Organic Load Fluctuation Using Cassava Waste Water on Anaerobic Hybrid Reactor
Authors: Yusron Sugiarto, Pratin Kullavanijaya

D-7
Reduction of Metal Mercury Concentration by The Plant’s Mata Lele (Azolla pinnata R. Br.) for Irrigation Water
Authors: Rusnam, Asmiwarti and Maidar Pratomo

Sub-Theme: Biophysics Engineering

D-8
Inoculation of Uromycladium tepperianum Causes Gall Rust Disease in Various Provenances Sengon (Falcataria moluccana (Miq.)
Authors: Arief Muammar, Gita Meidiana, Fitria R. Ratmadanti, Siti H. Nurrohmah and Diah Rachmawati

D-9
Spectral Imaging Technology for Quality Evaluation of Agricultural Materials
Authors: Byoung-Kwan Cho
D-10
Phenotypic Characters Analysis of Cross Melon
(Cucumis melo L.) Tacapa Cultivar
Authors: Ganies Riza Aristya, Andika Tripramudya Onggo, Budi Setiadi Daryono

D-11
Yield Function Model of Vegetable Crops
Authors: Rahman Arif, Rahmad Hari Purnomo and Hilda Agustina

D-12
Identification of Nitrogen Status in Brassica juncea L.
Using Color Moment, GLCM and Backpropagation Neural Network
Authors: I Putu Gede Budisanjaya, I. K. G. Darma Putra and I Nyoman Satya Kumara

D-13
Real Time Detection of Pin Hole on Worm-eaten Chestnut with 2CCD Camera
Authors: Soo Hyun Park, Soo Hee Lee, Seong Min Kim and Sang Ha Noh

D-14
Growth and Light Utilization Efficiency of Lettuce as Affected by Frequency and Duty Ratio of LED Illumination
Authors: Jae Su Lee and Yong Hyeon Kim

D-15
A Model-Based Approach for Extracting Viscoelastic Properties from Ultrasound Measurements
Authors: Sri Waluyo, Ya Guo, Gang Yao and Jinglu Tan

D-16
Energy and Emissions on Lemuru (Sardinella sp.) Fishing in Bali Strait
Authors: Miftahul Choiron, Wahyu Supartono, Ag. Suryandono

D-17
Scale-up of Production System Prior to Commercial Moss (Sphagnum sp) Rooftop Greening
Material
Authors: Mirwan Ushada, Wildan Fajar Bachtiar, Ario Wicaksono, Haruhiko Murase

D-18
The Role of Seed Producer in Maintaining Corn Production Sustainability
Authors: Winda Amilia, Didik Purwadi, Henry Yuliando

D-19
Non Destructive Measurement of Catechin Content in Gambir (Uncaria gambir Roxb) Using NIR Spectroscopy
Authors: andasuryani, Y.A. Purwanto, I.W. Budiastra, K. Syamsu and Lady C.E. Lengkey

D-20
Non Destructive Prediction of Ripe-Stage Quality of Mango Fruit CV ‘Gedong Gincu’ Stored in Low Temperature by NIR Spectroscopy
Authors: Yohanes Aris Purwanto, Putri Wulandari Zainal, Sutrisno, Usman Ahmad, Yoshio Makino, Seiichi Oshita, Yoshinori Kawagoe and Shinichi Kuroki

Sub-Theme: System and Management

E-1
Production Optimization of Crude Palm Oil at PTPN VII Unit Usaha Betung by Using Goal Programming Method
Authors: Rahmad Hari Purnomo, Endo Argo Kuncoro and Malis Septian

E-2
Application of Analytical Hierarchy Process in Selection of Herbal Product
Authors: Luh Putu Wrasiat, Dewa Ayu Anom Yuarini, Ida Ayu Mahatma Tuningrat and I Made Anom Surisna Wijaya

E-3
Subak Development Programs to Implement Agro-Ecotourism
Authors: Sumiyati, Wayan Windia, I Wayan Tika and Ni Nyoman Sulastri

E-4
A Study on Determinant Factor Affecting Performance of Palm Oil Productivity in Pelalawan Regency, Riau Province, Indonesia
Authors: Widya Alwarritzi and Putu Hangga

E-5 Design of Wireless Measurement of Soil Gases and Soil Environment Based on Programmable-System-On-Chip (PSOC)
Authors: Arief Sudarmaji, Akio Kitagawa and Junichi Akita

E-6 Development of UV and Violet Illumination System with High Power LED for Fluorescence Imaging
Authors: Hoyoung Lee, Moon S. Kim, Soo Hyun Park and Sang Ha Noh

E-7 Development of Real Time Change Point Analysis for Field Environmental Information in Agriculture
Authors: Andri Prima Nugroho, Takashi Okayasu, Muneshi Mitsuoka, Eiji Inoue, Yasumaru Hirai and Lilik Sutiarso

E-8 Simplified Algorithm for Daily Time Step Simulation of Standalone PV System Using Peak Sun Hour Data
Authors: Dimas Firmanda Al Riza and Syed Ihtsham-ul Haq Gilani

E-9 Image Processing Method for Counting of Fish Eggs and Fish Juveniles
Authors: I Wayan Astika and Fajar Mulyanti

E-10 Institutional Culture in Brantas Watershed Management
Authors: Nugroho Tri Waskitho

E-11 Modeling and Simulation of Oil Palm Plantation Productivity Based on Land Quality and Climate Using Artificial Neural Network
Authors: Hermantoro
E-12
Application of Fuzzy Quantification Theory I in The Criteria Selection of Gate Operation in Blawong Irrigation System, Bantul, Yogyakarta
Authors: Murtiningrum, Mega Primarini and Saiful Rochdyanto

E-13
Kinetic of Drying of Sliced Turmeric with Modified Direct Sun Drying by Employing Greenhouse Effect
Authors: Hanim Z. Amanah, Silvia insan Muliawati and Sri Rahayoe

E-14
Performance Analysis of Horizontal Tube Coffee Roaster Heated by Combustion of Producer Gas of Biomass Gasification
Authors: Bambang Purwantana, Arjanggi Nasution and Bambang Prastowo

E-15
A Quantitative Assessment Model of Water Resource Conservation Measures Case Study At Upper Watershed of Kali Progo
Authors: Chandra Setyawan, Sahid Susanto and Sukirno

E-16
Kinetic of Drying of Banana Chip with Cabinet Dryer
Authors: Joko Nugroho W.K., Ascaryo Dwi Anggoro and Nursigit Bintoro

E-17
The Change of Chili Quality During Storage in Plastic Cup After Hot Water Treatment in Various Temperature and Time
Authors: Devi Yuni Susanti, Sri Rahayoe, Budi Rahardjo and Jesica Elviana

POSTER SESSION
P-1
Making Blondo Flour as Protein Source Food with Physical, Mechanical and Chemical Treatments on Virgin Coconut Oil (Vco) Processing Waste
P-2
Development of a Colorimetric Taste Sensor Based on Dye-Bead Conjugated Array and Imaging System for White Wines
Authors: Anak Agung Istri Sri Wiadnyani, and I Wayan Rai Widarta

read

P-3
Rotating Force of Vanes on Irrigation Water-Scooped Wheel
Authors: Soo Chun, Soo Hyun Park, Tu San Park, Seongmin Park, Daesik Son and Seong In Cho

read
The usage of shaft to shaft transmission for rotary saw crusher for paddy straw

1Tri Tunggal, Tamaria Panggabean, and Hilda Agustina
Faculty of Agriculture, Sriwijaya University, Inderalaya
E-mail: tritungga@ymail.com
E-mail: tamaria_p@yahoo.co.id
E-mail: hildagustina@gmail.com

Abstract

The production of organic fertilizer was still constrained by low crushing capacity, especially for paddy straw. This material has not been utilize optimally for organic fertilizer. Paddy rice harvest index is about 0.5, meaning paddy rice plant produced straw as much as 50 percent of the total material which was yielded by paddy plantation. It is a potential source for organic fertilizer. The problem is that farmers could cut it into small piece in high capacity. Several machines have been designed to solve this low capacity but many trouble operations found by these machines. In this
research, the knives were replaced by rotary saws. These rotary saws were connected to the shaft by screw mode.

The objective of this research was to create a capable machine that could crush the paddy straw and overcome the disadvantage of previous machines. Another objective was to get the yield as small as possible so the decomposition process will run rapidly.

This research used an engineering design method. It was conducted through 5 steps; they were Definition of the problem, Gathering of information, Generation of alternative solutions, Evaluation of alternatives and decision making, and Communication of the results. The designed machine was drawn into technical drawing and then fabricated it at the Agricultural Engineering Workshop. The rotary saws were rotated by a 7.5 hp-diesel engine. The material capacity was 190.6 kg per hour at 1400 rpm while the fuel consumption was 0.85 L/hour.

In conclusion, the shaft to shaft transmission could be applied to the rotary saw crusher with a lighter fibration and smaller size.

Keywords: rotary saws, paddy straw crusher, organic fertilizer

INTRODUCTION

Sustainable agriculture is an agricultural practice that apply organic matter as much as possible to grow plant rather than chemical compounds. It has been proven that the usage of chemical fertilizer intensively could decrease soil quality, killed some soil microorganism, and contaminate the environment primarily water source. It can not be disputed that chemical application increase the agricultural production. The fast population growth means the increasing demand of food. Green Revolution was introduced in Europe and USA around 1960s to solve this condition. In this program, the effort to fulfill the food need was conducted by the introduction high production plants and application of agrochemical compounds to increase the plant yield like chemical fertilizer and pesticides. In Indonesia, this concept was adapted at around 1970s and have been practiced widely at all over agricultural areas. The production was increased significantly but the negative effect also occurred that affected the human health and environment, like soil acidification, soil compaction, nutrients unbalanced, high energy consumption, environment issue, vanishing a certain plant species, the
enhance of insects and weeds retention to chemical compounds, and the ethics aspect related to soil development intensively (Saragih, 2008 and Basedow, 2003).

Organic agricultural practice was introduced as an alternative solution to eliminate the destruction that was caused by the heavy use of agrochemical. One alternative that could be applied is to substitute the chemical fertilizer with organic fertilizer. This fertilizer is made of a mixture of plant residues which have been crushed, animals feces, and bioactivator as an agent which could accelerate decomposition. The addition of chalk would increase the pH value and makes decomposition faster (Sutanto, 2002).

Organic waste could be found in a lot amount around us and was still considered as an useless waste and bothered our environment. Organic matter was biological material that may be converted into organic fertilizer and animal food. If it would be make for fertilizer the size should be decreased as small as possible to widen the surface area for microorganism to fermented. The same process should be done in making animal feed, the smaller the size the better the digestion process in the animal stomach (Lembaga Pengembangan Teknologi Pedesaan, 2011). Plant residues crushing machines have been created start from the capacity of 230 kg/hour to 1200 kg/hour. Basically, the main components of the machines were hopper, crushing knives, power transmission, frame/body, and power unit. Hopper was a which functioned as a storing box and feed the crushing cylinder with plant residues and crushing knives which functioned to crush the organic materials become as small as possible. The shape of the knife was similar to blade shape and they were connected to the shaft by welding. Power transmission used a belt-pulley, while the power unit could be generated by a gasoline or diesel engine. Power unit size was chosen based on the work load that would be done. The bigger the load the bigger the power unit should be used. Lembaga Pengembangan Teknologi Pedesaan (LPTP) Surakarta has fabricated an organic waste crusher with a capacity of 725 kg/h powered by a 24-HP diesel engine. This machine has 6 knives. PT. Agro Tunas Teknik fabricated a crushing machine with a capacity of 1200-2000 kg/hour rotated by an engine of 10.5 HP and fuel consumption 1.5 litres to 2.0 litres per hour. The main problem of these two machines was that the material often plugged beteween knives and concave. If it happened the engine stopped and it took much time to remove the plugged-material. Paddy straw and palm oil empty fruit bunch were the most difficult materials to be crushed using knife-crushes. These two plant residues have long fiber so that they are difficult to be crushed. Pohan (2008) stated that palm oil empty fruit bunch contained long and strong fiber. These fiber was
very difficult to cut and took a long time to decompose. The fiber tended to be plugged between the knives and concave when were being cut. In case of too much load to the machine the engine stopped. The knives could break due to the age where knives are connected to the shaft by welding (Appendix 1).

A palm oil empty fruit bunch crusher was designed to overcome this difficulties. Eleven rotary saws were replaced the knives used at the previous machine. Rotary saw was usually used at the saw mill or building material to process log wood into several sizes replaced the knives. There were 11 rotary saws put at a shaft and among them were placed eleven spacers (Appendix 2). The spacers also functioned as flywheel that kept the moment inertia. The hopper with trapezium shape was installed so that the palm oil empty fruit bunch was directly sawed by the rotary saws. The yield fell into a bucket in small size. It worked successful and could cut another hard plant residus like cassava and acacia. But, it could not be used for plant residues with long fiber like corn and paddy. They plugged around the saws (Tunggal et al, 2011). Based on this experience, the arrangement of the rotary saws and the concave were modified to destroy paddy straw. The distance between one rotary saw and another was 10 cm and the there were 5 metal rods welded to the below side of the concave. On the left and right side of every saw were installed 2 cm plates in thickness used bolts to strengthen saws. The cylinder was rotated using a 7.5 HP diesel engine by belt-pulley transmission. The concave was used as a base in destroying the plant residues. In this design, paddy straw was successfully changed into fine size. The maximum cylinder speed that could be reached was 1300 revolution per minute (RPM). If the speed was over 1300 RPM the belt would vibrate very hard and was dangerous for operator (Appendix 3). The result of this research were the effective capacity was 206.2 kg/h, the size was irregular both in size and shape, total weight of the machine 112 kg, diesel fuel consumption 0.9 liter per hour, and the average speed was 812 RPM (Tunggal and Panggabean, 2012).

Direct transmission has higher efficiency compared with the others, especially when the power source rotates the permanent load. In this mode of transmission the shaft of the power source was connected in-line with the functional part of the machine. The example for this connection was a generator set where the shaft of the engine was directly connected to the shaft of the dynamo. Learned from this case, it was possible to be applied to the crushing machine with a modification. In this experiment, the connector used a rubber conveyor that usually used for coal transportation. The
connecter consisted 3 pieces rubber conveyor with 40 cm in length and 15 cm in width. At the engine part and crushing cylinder placed a round metal sheet with 1 cm in thick and 15 cm in diameter. There were 6 holes to connect the three rubber to the round metal sheet. Rubber sheet was chosen because it was elastic and could compensate a shock.

Materials and Method

Method

This research was conducted by Problem-Solving Methodology, that consisted of the following steps: Definition of the problem, Gathering of information, Generation of alternative solutions, Evaluation of alternatives and decision making, Communication of the results.

1. Definition of the Problem.

One of the main problems in organic fertilizer production is the crushing process. Many types of crushers have been created and fabricated by companies but weakness found at junction between shaft and knives. The knives were jointed to the shaft by welding. They often broke because the weld-joint was not so strong could not resist the impact of the plant residue. The other problem that was found the knives would be blint due to usage. By this experience, it could be concluded that there were two main problems found at the knife-type crushers, they were joint part and sharpness of the knives.

2. Gathering Information.

There was a competition between farmers and big plantation to obtain chemical fertilizers (Urea, TSP, and KCl). The perennial crops like rubber and palm oil needed much fertilizers to grow. The acreage for these crops grew very fast. As a result, some of the fertilizers that should be used for paddy was bought by perennial crop farmer. On the other hand, paddy farmers have not used to apply organic fertilizer.

Concept Generation is the use of creativity-stimulation methods, the application of physical principles and qualitative reasoning, and the ability to find and use information. Experience helped greatly in designing the machine. Road map of my
previous researches gave much inspiration. The ability to generate high-quality alternative solutions is vital to a successful design.

4. Evaluation of alternatives and decision making

The evaluation of alternatives involves systematic methods for selecting the best among several concepts, often in the face of incomplete information. Several alternatives were discussed and then chosen the best one based on possibilities like machine efficiency, machine weight, strength, safety, and ergonomics factors.

5. Communication of the results.

The purpose of the design is to satisfy the needs of a customer or users. For this reason, the finalized design must be properly communicated. The communication is usually by oral presentation to the sponsor as well as by a written design report.

Materials

Materials that were used There were two main parts of the machine, they were structural and functional parts.

1. Structural Part.

The structural parts of the machine were:

a. Frame

Frame was made of a rectangle iron with 2.0 mm in thick and 1.5 inch of sides. Welding was used to joint one piece of metal to another.

b. Concave

Concave was a part of the machine that acted as a “housing” of the rotary saws. It was formed in cylinder shape made of 3 mm metal sheet. The cylinder was divided into two parts in the same size. One-half at the top functioned to flow plant material to the next knife, and one half at the below part functioned as an anvil to destroy the plant material. At the right end of the cylinder, the crushed plant thrown out through an outlet.

c. Hopper.

Hopper is a box-type tunnel where the plant residue was loaded and felt into crushing chamber.

d. Outlet

Outlet is a hole where the plant residues that has been crushed throws out. It is located at the below right side of the cylinder.

2. Functional Part
Functional parts of the machine were:

a. Crushing cylinder.

 Crushing cylinder was a chamber where plant residues was torned into small pieces. A screw shaft functioned as the heart of the rotary saws. Every rotary saw had a hole at the center and the shaft was inserted to this hole. An arrangement was form when 11 rotary saws were inserted.

b. Bearing.

 Bearing was a machine element that eliminated shearing force between two moving parts. Two bearings were used at this machine, one was installed at the left side and the second was installed at the right side next to flange.

c. Power transmission.

 The power transmission used was not any power transmission types commonly used at any machine. It consisted of two meta flange with 1 cm in thick and 15 cm in diameter. Three strenghten sheet rubber with 30 cm in length and 10 cm in width were connected the flanges.

d. Engine.

 Diesel Engine was chosen as a power source to rotate cylinder.

3. Test of the crusher

 A test should be done before machine used. First, it was tested without load to ensure that all component worked well. Before the engine was cranked, check all parts of that machine like loosing nut, lubricant, radiator, fuel, and air cleaner whether they were in proper condition. After that cranked the engine and pay attention to the strange noise when the engine was running. If there was a strange noise it meaned a nut or bolt might be not fastened properly and fastened it. The test could be continuoed when the machine was ready.

 The test procedure was as follows:

1. Paddy straw was prepared as much as 50 kg at 14 percent moisture content (It was dried at room temperature for 1 month).

2. Engine was cranked and let it run for about 15 minutes to make sure the engine run well.

3. Paddy straw was thrown into the hopper little by little.

4. The time needed to crush 50 kg paddy straw was recorded using stopwatch.

5. To calculate the material capacity, devide the material that could be crushed with the time needed.
RESULTS AND DISCUSSION

A. RESULTS

1. Machine Performance

The design of the machine was presented in Appendix 1 and 2. To ensure the safety operation, check all parts of the machine if there was a loss nut. Check also the oil level of the engine, fuel tank, radiator water, and air cleaner. Crancked the engine and let it run for about 15 minutes. Paddy straw was thrown into the crushing chamber little by little continuously. The crushed paddy straw was come out through the outlet port and went into the bag.

The machine could operate well and there was no any trouble in this step. The vibration was lower than the previous machine (Tunggal and Panggabean, 2012). The maximum speed that could be reached was 2100 revolution per minute (the engine gas stick was at the maximum point) compared with the previous research that could rotate only 1300 rpm. Fuel consumption of the engine was 0.85 litre per hour and the size of the paddy straw was between 2.0 mm to 6.0 mm and the dominan size was 3.2 mm (about 80 %). This result fulfilled the Standar Nasional Indonesia (SNI) for organic matter size for good composting process.

2. Test Results

Paddy straw was used in this research as mush as 50 kg. In South Sumatera, this material has not been used for organic fertilizer. Farmer just burned it if has been dry. Producing organic fertilizer from paddy straw has not been a common activity. The test result showed that the average effective material capacity could be seen at Table 1.

<table>
<thead>
<tr>
<th>No</th>
<th>Size</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Less than 0.5 cm</td>
<td>21 %</td>
</tr>
<tr>
<td>2</td>
<td>0.5 – 1.0 cm</td>
<td>28 %</td>
</tr>
<tr>
<td>3</td>
<td>2.0 – 5.0 cm</td>
<td>15 %</td>
</tr>
<tr>
<td>4</td>
<td>More than 5.0 cm</td>
<td>36 %</td>
</tr>
</tbody>
</table>

B. DISCUSSION
The main purpose was to design a plant residue crusher to change organic matter size as small as possible so that it took less time in decomposing process. Based on the test result at 1300 revolution per minute the material capacity was 190.6 kg per hour. Compared with the previous machine (Tunggal and Panggabean, 2012) the material capacity was lower at the same cylinder speed. But, the maximum speed that could be reached was much more higher; that was 2100 revolution per minute. There was 64 percent of the crushed paddy straw fulfilled the SNI for decomposition.

Cylinder speed and feeding speed were the main factors that affected material capacity. The faster cylinder speed the higher the material capacity, and the faster the feeding raw material the material capacity increased. Rubber sheet that connected cylinder shaft and engine functioned better than belt-pulley transmission. It was also easier to crank the engine compared with the previous design.

In fact, farmers had understood how to make organic fertilizer and know the advantages of the organic fertilizer either for human or environment. In Java Island paddy straw was utilized for livestock. Different from Javaness farmers, South Sumatera farmers burned the paddy straw residues and gave their livestock with green grass. The result of this research could also be tried as a mixture of concentrate for livestock feed.

CONCLUSION

Shaft to shaft transmission could be applied to the paddy straw crusher and the performance was better than belt-pulley transmission in case of material size, cylinder speed, and more compact in shape.

REFERENCES

Appendix 1. Plant residue crusher knife type using belt-pulley transmission

Appendix 2. Palmoil empy fruit bunch circular saw crusher using belt-pulley transmission
Appendix 3. Technical drawing of previous design of circular saw crusher using belt-pulley transmission

Appendix 4. Photograph of the latest design of circular saw crusher using rubber-flange transmission