TABEL OF CONTENTS

Executing Board	i
Organizing Committee	ii
Preface	iii
Foreword from Rector of Sriwijaya University	iv
Foreword from President of IAES Indonesia Section	v
Foreword from Committee From Kirtkareli University Turkey	vi
Table of Contents	vii
Short Talk : Ir. Henriyanto Toha (General Manager TELKOM SUMSEL)	x
Keynote Speaker 1 : Assoc. Prof. Dr. Jafri Din (Universiti Teknologi Malaysia)	xi
Keynote Speaker 2 : Agus Widyotrisnomo, Ph.D (Institut Teknologi Bandung)	xii

1. Numerical Solution of Internet Pricing Scheme Based on Perfect Substitute Utility Function
 Indrawati1, Irmelilyana, Fitrli Maya Puspita, Eka Susanti, Evi Yulias and Oky Sanjaya

2. Generalized Model and Optimal Solution of Internet Pricing Scheme in Single Link under Multiservice Networks
 Irmelilyana1, Indrawati, Fitrli Maya Puspita, Rahma Tantia Amelia

3. Analysis of Security Service Oriented Architecture (SOA) With Access Control Models Dynamic Level
 Erick Fernando1, Pandapostan Siagian2

4. An Improved Model of Internet Pricing Scheme Of Multi Link Multi Service Network With Various Value of Base Price, Quality Premium and QoS Level
 Fitrli Maya Puspita1, Irmelilyana, Indrawati

5. Automated Vehicle Monitoring System
 Agustinus Dedy Arief Wibowo1, Rudi Heriansyah2

6. Target Localization With Fuzzy-Swarm Behavior
 Siti Nurmaiti1, Siti Zaithon M. Hashim, A. Zarkasti1, Bangbang Tumih1, Agus Triadi1

7. Sensor Fusion and Fuzzy Logic for Stabilization System of Gimbal Camera on Hexacopter
 Huda Ubayaa1, Hanipah Mawarni2

8. Noise Reduction Technique for Heart Rate Monitoring Devices
 Q.H.Hi1, Yuanta Rahaya2, Resa Firdiyah Macy2

9. Implementation of Quadcopter for Capturing Panoramic Image at Sedayu Bantul
 Anton Yudiana1, Nuryono Satya Widodo1, Sunardi1

10. First Person View On Flying Robot For Real Time Monitoring
 Huda Ubayaa1, Muhammad Iqbal2

11. Design of Context Dependent Blending (CDB) in Behaviour Based Robot Using Particle Swarm Fuzzy Controller (PSFC)
 Andi Adriansyah

12. ELCONAS Electronic Control Using Android System With Bluetooth Communication And Sns Gateway Based Microcontroller
 Ahmad Fadhilli1, Yandi Prasetia1, Adriansyah, Titin Wahidah Tunnisa1, Ayu Ambarwati1, Rossi Passarella2

13. Data Optimization on Multi Robot Sensing System with RAM based Neural Network Method
 Ahmad Zarkasti1, Siti Nurmaiti2

 M. Fachrurossati1, Novi Yuliani1, Muharrami Maya Agustin1

15. Hand Contour Recognition In Language Signs Codes Using Shape Based Hand Gestures Methods
 Ade Silvia1, Nyaru Latifah Husni2

16. Hand Gesture Recognition as Password to Open The Door With Camera and Convexity Defect Method
 Rossi Passarella1, Muhammad Fadhilli1, Sunarto1

Note: The page numbers are not consistent with the layout of the table of contents.
An Improved Model of Internet Pricing Scheme Of Multi Link Multi Service Network With Various Value of Base Price, Quality Premium and QoS Level

Fitri Maya Puspita*1, Irmeilyana*2, Indrawati*3

1Department of Mathematics, Faculty of Mathematics and Natural Sciences Universitas Sriwijaya, South Sumatera Indonesia
2pipitmac140201@gmail.com

Abstract— Internet Service Providers (ISPs) nowadays deal with high demand to promote good quality information. However, the knowledge to develop new pricing scheme that serve both customers and supplier is known, but only a few pricing plans involve QoS networks. This study will seek new proposed pricing plans offered under multi link multi service networks. The multi link multi service networks scheme is solved as an optimization model by comparing our four cases set up to achieve ISPs goals in obtaining profit. The decisions whether to set up base price to be fixed to recover the cost or to be varied to compete in the market are considered. Also, the options of quality premium to be fixed to enable user to choose classes according to their preferences and budget or to be varied to enable ISP to promote certain service are set up. Finally, we compare the previous research with our model to obtain better result in maximizing the ISPs profit.

Keywords— multi link multi service network, internet pricing, base price, quality premium, QoS level

I. INTRODUCTION

Previous works on pricing scheme of QoS networks is due to [1-3]. They described the pricing scheme based auction to allocate QoS and maximize ISP’s revenue. The auction pricing scheme is actually scalability, efficiency and fairness in sharing resources (see in [4-10]).

Recent studies have also been conducted to address problem of multiple service network, other kind of pricing scheme in network. Sain and Herpers [11] discussed problem of pricing in multiple service networks. They solve the internet pricing by transforming the model into optimization model and solved using Cplex software. Also, [12, 13] discussed the new approach and new improved model of [11, 14] and got better results in getting profit maximization of ISP.

Although QoS mechanisms are available in some researches, there are few practical QoS network. Even recently a work in this QoS network proposed by [14-17], it only applies simple network involving one single route from source to destination.

So, the contribution is created by improving the mathematical formulation of [1, 13, 14, 18] into new formulation by taking into consideration the utility function, base price as fixed price or variable, quality premium as fixed prices and variable, index performance, capacity in more than one link and also bandwidth required. The problem of internet charging scheme is considered as Mixed Integer Nonlinear Programming (MINLP) to obtain optimal solution by using LINGO 13.0 [19] software. In this part, the comparison of two models is conducted in which whether decision variable is to be fixed of user admission to the class or not. This study focuses to vary the quality premium parameters and see what decision can be made by ISP by choosing this parameter.

Our contribution will be a new modified on solving internet charging scheme of multi link multi service networks Again, we formulate the problem as MINLP that can be solved by nonlinear programming method to obtain exact solution.

II. PAST LITERATURE REVIEW

Table I and Table II below present the several past research focusing on internet pricing and current research on wired internet pricing under multiple QoS network.

<table>
<thead>
<tr>
<th>Pricing Strategy</th>
<th>How it Works</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsive Pricing [20]</td>
<td>Three stages proposed consist of not using feedback and user adaptation, using the closed-loop feedback and one variation of closed loop form.</td>
</tr>
<tr>
<td>Pricing plan [21]</td>
<td>It Combines the flat rate and usage based pricing. Proposed pricing scheme offers the user a choice of flat rate basic service, which provides access to internet at higher QoS, and ISPs can reduce their peak load.</td>
</tr>
<tr>
<td>Pricing strategy [14]</td>
<td>Based on economic criteria. They Design proper pricing schemes with quality index yields simple but dynamic formulas’. Possible changes in service pricing and revenue changes can be made.</td>
</tr>
<tr>
<td>Optimal pricing strategy [22]</td>
<td>The schemes are flat fee. Pure usage based. Two part tariff. Supplier obtains better profit if chooses one pricing scheme and how much it can charge. Two part of analysis homogenous and heterogeneous.</td>
</tr>
<tr>
<td>Paris Metro Pricing [23, 24]</td>
<td>Different service class will have a different price. A scheme makes use of user partition into classes and move to other class if found same service from other class with lower unit price.</td>
</tr>
</tbody>
</table>
III. MODEL FORMULATION

We have parameters as follows (adopted in [18]).

- \(\alpha_i \) : base price for class \(j \), can be fixed or variables
- \(\beta_i \) : quality premium for class \(j \) that has \(I_i \) service performance
- \(C_l \) : total capacity available in link \(l \)
- \(p_{il} \) : price a user willing to pay for full QoS level service of \(i \) in link \(l \)

The decision variables are as follows.

- \(x_{il} \) : number of users of service \(i \) in link \(l \)
- \(a_{il} \) : reserved share of total capacity available for service \(i \) in link \(l \)
- \(I_i \) : quality index of class \(i \)

Formulation when we assign \(\alpha \) and \(\beta \) fixed is as follows.

\[
\max \sum_{l=1}^{L} \sum_{i=1}^{S} (\alpha_i + \beta_i x_{il})
\]

Subject to constraint (2)-(8) and (10) with additional constraints

\[
\beta_i \leq q_i [k, q] \in [0,1]
\]

Formulation when we have \(\alpha \) and \(\beta \) vary

\[
\max \sum_{l=1}^{L} \sum_{i=1}^{S} (\alpha_i + \beta_i x_{il})
\]

Subject to Constraint (2)-(8) and (10) with additional constraints

\[
\alpha_i + \beta_i x_{il} \geq \alpha_{l-1} + \beta_{l-1} x_{il-1}, i > 1, l = 1, \ldots, S
\]

Since ISP wants to get revenue maximization by setting up the prices chargeable for a base price and quality premium and QoS level to recover cost and to enable the users to choose services based on their preferences like stated in (1). Constraint (2) shows that the required capacity of service does not exceed the network capacity. Constraint (3) explains that required capacity cannot be greater than the network capacity \(C \). Constraint (4) guarantees that network capacity has different location for each service that lies between 0 and 1 (5). Constraint (6) explains that QoS level for each service is between the prescribed range set up by ISP. Constraint (7) shows that users applying the service are nonnegative and cannot be greater than the highest possible users determined by service provider. Constraint (8) states that the number of users should be positive integers. Objective function (9) explains that ISP wants to get revenue maximization by setting up the prices chargeable for a base price and quality premium and QoS level to recover cost and to enable the users to choose services based on their preferences like stated in (12). Constraint (13) explains that the summation of base cost and quality premium has different level for each service which is at least the same level or lower level. Constraint (11) states that value of quality premium lies between two prescribed values. ISP wants to get revenue maximization by setting up the prices chargeable for a base price and quality premium and QoS level to recover cost and to enable the users to choose services based on their preferences like stated in (12). Constraint (13) explains that the summation of base cost and quality premium has different level for each service which is at least the same level or lower level. Constraint (14) shows that the base price should lie between prescribed base price set up by ISP. ISP wants to get revenue maximization by setting up the prices chargeable for a base price and quality premium and QoS level to recover cost and to enable the users to choose services based on their preferences as stated in objective function (15).

IV. OPTIMAL SOLUTION

We will solve the model by using LINGO 13.0 then

1) Case 1: \(\alpha \) and \(\beta \) as constant by modifying the QoS level so we divide Case 1 into three sub cases.

2) Case 2: \(\alpha \) as constant and \(\beta \) as a variable by modifying the quality premium and QoS level so we divide Case 2 into 9 sub cases.

3) Case 3: \(\alpha \) as variable and \(\beta \) as constant so we divide Case 4 into 9 cases.

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>CURRENT RESEARCH CONDUCTED ON WIRED INTERNET NETWORKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>How It works</td>
</tr>
<tr>
<td>New Approach on solving optimization of internet pricing scheme in multiservice networks proposed by Puspita et al. [12]</td>
<td>By comparing with previous work done by Sain and Herpers [11], we obtain better result done by LINGO 13.0. Work in multi service network with availability of QoS level.</td>
</tr>
<tr>
<td>Improved Model of internet pricing scheme in single bottleneck multi service network proposed by Puspita et al. [6] and in multiple bottleneck links proposed by Puspita et al. [18]</td>
<td>By improving and modifying the method proposed by Sain and Herpers [11] and Byun and Chatterjee [14], the new improved methods are proven to result in better profit for ISP. The improved model proposed works in single and multiple bottleneck links in multiservice network which has QoS level for each service.</td>
</tr>
<tr>
<td>Improved Model of internet pricing scheme in single bottleneck and multi bottleneck links in multiple QoS networks proposed by Puspita et al. [4], Puspita et al. [5-9]</td>
<td>By improving and modifying the method proposed by Yang [1], Yang et al. [2, 3, 25] and Byun and Chatterjee [14], the new improved models that are solved by LINGO 13.0 can perform better results that maximize the ISP profit. The models work on both single and multiple bottleneck links in multi QoS networks.</td>
</tr>
</tbody>
</table>
4) Case 4: \(\alpha \) and \(\beta \) as variables by modifying the base price, quality premium and QoS level so we divide Case 3 into 27 sub cases.

We have total of 48 sub cases. According to the results of LINGO 13.0 we have two solutions of sub case from each case as follows. We also compare our results with the result previously discussed by [18].

Table III to Tabel VI below present the optimal solution of our four cases. Tabel III shows that in Case 1: \(\alpha \) and \(\beta \) as constant, we obtain the highest optimal solution of 750.445. Total highest capacity used is 7965 kbps or 79.65\% of total capacity available. The highest profit is obtained in our model with \(I_{<L_{1}} \) and model proposed by [18] with capacity of 7950 kbps or 79.50\%.

\[
\sum_{i} \text{Profit} = \alpha + \beta \cdot \text{Profit}
\]

\[
\text{Used} = \frac{\text{Profit}}{7980}
\]

Table IV depicts the solution of case 2. We obtain the highest optimal solution of 1171.8 with the highest capacity used is 7965 kbps or 79.65\% of total capacity available. The highest profit is obtained in our model with \(I_{<L_{1}} \) and model proposed by [18]. In Table V. The highest profit is 1179.445 which is obtained in our model with \(I_{<L_{1}} \) and capacity used of 7950 kbps or 79.50\%. Table VI shows that the highest profit of 1627.6 is obtained in our model with \(I_{<L_{1}} \) with capacity used of 7950 kbps or 79.50\%.

Table V

<table>
<thead>
<tr>
<th>Link 1</th>
<th>Case 3 solution with (\alpha) as (\alpha_{i} = \alpha) and (\beta) as a constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{=L_{1}})</td>
<td>(I_{<L_{1}})</td>
</tr>
<tr>
<td>(C \text{ Used})</td>
<td>(C \text{ Used})</td>
</tr>
<tr>
<td>1 210</td>
<td>24.105</td>
</tr>
<tr>
<td>2 2625</td>
<td>361.575</td>
</tr>
<tr>
<td>3 1155</td>
<td>120.525</td>
</tr>
</tbody>
</table>

Table VI

<table>
<thead>
<tr>
<th>Link 1</th>
<th>Case 4 solution with (\alpha) as (\alpha_{i} = \alpha) and (\beta) as (\beta_{i} = \beta_{1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{=L_{1}})</td>
<td>(I_{<L_{1}})</td>
</tr>
<tr>
<td>(C \text{ Used})</td>
<td>(C \text{ Used})</td>
</tr>
<tr>
<td>1 210</td>
<td>32.4</td>
</tr>
<tr>
<td>2 2625</td>
<td>486</td>
</tr>
<tr>
<td>3 1155</td>
<td>162</td>
</tr>
</tbody>
</table>

In all cases, the requirement for QoS level for service \(i \) should be less than service \(i-1 \) scheme yield the highest optimal solution. From all 4 cases, the highest optimal solution will be case 4 when we set up base price and quality premium as variables. It means ISP is able to compete the market and promote certain services if ISP varies the base price and quality premium and set up the QoS level of \(I_{<L_{1}} \).

V. CONCLUSIONS

We have shown that by considering new parameters, more decision variables and constraints, we obtain better profit maximization. The cases shown above basically are ISP strategy to vary its preference to achieve their goals. ISP is able to adopt the cases to suit their goals. The highest maximum profit that can be obtained by ISP is by setting up the base price and quality premium to be varied and also setting up \(I_{<L_{1}} \).

However, like stated in [11, 14] since it is more theoretical point of view and assumptions, we limit our result only static result in data changes, and cost preference is just based on our discrete data.

Further research should address more generalization of the model to also consider numerous services offered or generalization of more services.

ACKNOWLEDGMENT

The research leading to this paper was financially supported by Directorate of Higher Education Indonesia (DIKTI) for support through Hibah Bersaing Tahun I, 2014.
REFERENCES

