PERUBAHAN KETERSEDIAAN FOSFAT PADA ULTISOL SEMBWAH YANG DIBERI KOTORDAN AYAM DAN BATUAN FOSFAT

Changes of phosphate availability in an Ultisol from Sembawa amended by chicken dung and rock phosphate

D. Budianta dan D. Tambus

ABSTRACT

Ultisols generally have low soil fertility, thus food crop yield show low yield if planted in the Ultisols. The main problems of this Ultisols for growing the food crops are low soil pH and high of Al exchangeability in acidic layers. To that respect, the fertility of Ultisols should be improved, in order the food crops can grow properly. One of afford to reclaim the soil fertility of Ultisols is using the application of chicken dung and rock phosphate. In this research, pot experiments were set up and inoculated during 8 weeks of incubation by applying chicken dung at the rate of 0, 10, 20, and 30 ton/ha and rock phosphate at 0, 100, 200 and 300 kg/ha at field capacity. The results showed that application of rock phosphate was more effective to increase the soil pH compared to the chicken dung. The increase of soil pH was 27% by rock phosphate and only 10% by chicken dung. Unfortunately the disadvantage of rock phosphate application to increase P availability was very slow due to low solubility in the water. After 8 weeks of incubation, the P replacement by rock phosphate was only 10%, it was still lower than chicken dung application which can increase P availability by about 23%. The other beneficial effect of both chicken dung and rock phosphate applications, it can decrease the Al exchangeability exceeding 90% at 20 ton/ha of chicken dung application and only 50% by rock phosphate application at 200 kg/ha. Moreover, the combination of treatment between chicken dung at the rate of 10 ton/ha and rock phosphate at 300 kg/ha, and/or chicken dung at the rate of 20 ton/ha and rock phosphate at 200 kg/ha had a highly similar results. In this regard the increasing of P availability was 50% compared to the control.

Keywords: Aluminum, chicken dung, rock phosphate and Ultisols

PENDAHULUAN

Fosfor merupakan salah satu unsur hara makro-essensial yang sangat dibutuhkan untuk pertumbuhan tanaman. Akan tetapi ketersediaan fosfor pada tanah Ultisol sangat rendah (Budianta, 1999; Budianta & Vanderdeelen, 2000). Salah satu akibat tegangan semusim tanah yang dikait oleh kejenuhan Al yang sangat sangat tinggi pada Ultisol (Budianta, 1997), bakarl-kejenuhan Al pada Ultisol mencapai 82%. Bencana ini selain-akibat yang dimiliki oleh Ultisol menyebabkan tanaman pangan tidak dapat tumbuh dengan sempurna dan tidak dapat memenuhi hara yang optimal (Pace et al., 1986; Bell & Edward, 1987). Penyebab...
lambatnya pertumbuhan tanaman adalah pertumbuhan akar yang terlambat dimana akarnya menebal dan pendek yang selanjutnya bernilai terhadap rendahnya pe-oxydarus usus hara dan air. Dalam prakteknya, tingginya Al bebas dalam lapisan tanah juga menyebabkan fosfat yang larut dalam rhinosfer tidak dapat diserap oleh tanaman karena P terikat oleh Al tersebut. Pada peningkatan Al-P terbukti menambahkan P menjadi kalah untuk tanaman.

METODE PENELITIAN

Suatu percooaan pot telah dilakukan di rumah kaca Jurnal Ilmu Tanah, Fakultas Pertanian, Universitas Sriwijaya, untuk mengetahui pengaruh pemberian kotoran ayam dan batuan fosfat sebagai amelioran untuk memperbaiki keterdeterdian P dalam tanah. Percooaan ini dilakukan dengan menggunakan rancangan acak lengkap fix-

torial. Dua kelompok tanah diambil dari lapangan yang sudah ada seluas 20 cm, selanjutnya dikeritingkan, ditumbuk dan disiapkan menggunakan metode asam larut dalam tanah. Kompos tanah Ultilol terdiri dari Kalim Penelitian Perkebunan Karit Sembawa, Sumatra Selatan.

Setelah cočoh tanah diperlukan untuk percooaan, kemudian cočoh tanah tersebut dihidupkan dengan kotoran ayam dan batuan fosfat, yang mana kotoran ayam yang digunakan mengandung P total 7,4 mg/kg, selanjutnya tanah fosfat mengandung P 49,23 mg/kg. Tiga kloranya kotoran ayam yang digunakan yaitu 0, 10, 20 dan 30 ton per ha, sedangkan tanaman kotoran tanah yang digunakan yaitu 0, 100, 200 dan 300 kg per ha. Agar tanaman yang digunakan tersebut diuapkan tiga kali, sehingga total percooaan terdiri dari 48 unit.

Setelah kedua percooaan dicampur merata dengan tanah Ultilol, tanah tersebut kemudian dimasukkan dalam pot plastik ukuran 5 kg tanah, selanjutnya dibiakkan selama 8 minggu dan dijaga kelembabanannya dalam kondisi lapasitas lapasitas dengan menahan air setiap dua hari. Parameter yang diukur adalah pH, P tersedia, dan Al-td, setelah mula dibuat. Data yang telah terkumpul dianalisis statistik dengan metode uji t dan uji F.

HASIL DAN PEMBAHASAN

Beberapa sifat kimia tanah Ultilol

Seperti jenis tanah Ultilol linnya, Ultilol e Sembawa, Sumatra Selatan mempunyai pH yang sangat masuk yaitu sebesar 4,37 dengan Al yang dapat diperlukan sebesar 2,22 (cMol+ kg-1) dan kejenuhan Al-nya mencapai lebih dari 95%.

Kondisi tanah demikian, kalau langsung dipetik menjadi bahan untuk budidaya tanaman pangan (tetenagian lanam leguminosae) tanpa perbaikakan lebih dahulu, akan memperoleh hasil yang sangat rendah (Budianta, 1999). Untuk itu tanah Ultilol perlu diperbaiki kembali agar terwujudnya tanaman sifat-sifat kimia yang sangat menghambat pertumbuhan tanaman.

Kemasan tanah potensial (P-CaK) Ultilol tersebut lebih rendah dari pada kemashan aktual (P-Ag). Hasil ini menunjukkan bahwa makanan neto negatifnya berada pada permukaan liat (Melen & Uchana, 1972). Selanjutnya P-tersedia yang diukur dengan tanaman Bray-I secara jelas sangat rendah dengan nilai 2,25 μg P L-1 (PPT, 1982) dan kecenderungan fosfat dalam Ultilol berada dalam bentuk ikatan dengan Al dan Fe (Table 1).

Kemasan kation-basa seperti K, Na, Mg dan Na yang dikandung pada tanah yang dikaji ini semuanya berada dalam jumlah rendah sampai sangat rendah. Percepatan perkembangannya kation-kation tersebut akibat proses pedogenesis tanah dimana kation-kation yang dikandung tersebut akan keluar dari interaksi perakaran oleh cairan hujan yang tinggi. Hasil ini mirip dengan yang telah diukur oleh Mondal et al. (2001). Dengan demikian ketidakseimbangan ini juga keran muncul dalam kebutuhan tanaman pangan tanpa ada input baku beras yang berasal dari pupuk organik maupun anorganik dan penggunaan.

Penelitian keamanan tanah setelah inkubasi

Berdasarkan hasil analisis statistik menunjukan bahwa pemberian kotoran ayam dan batuan fosfat secara mandiri berpengaruh sangat nyatanya terhadap pH Ultilol yang diberikan tanpa tanaman selama 8 minggu, akibatnya tanah tersebut hidup.

Table 1. Beberapa sifat kimia Ultilol Sembawa yang dikaui

<table>
<thead>
<tr>
<th>Jenis analisis</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (H2O)</td>
<td>4,37</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>3,68</td>
</tr>
<tr>
<td>C-organik (%)</td>
<td>2,41</td>
</tr>
<tr>
<td>N-total (%)</td>
<td>0,21</td>
</tr>
<tr>
<td>P-Bray-1 (μg P g-1)</td>
<td>2,25</td>
</tr>
<tr>
<td>K-d (Cmol+ kg-1)</td>
<td>0,19</td>
</tr>
<tr>
<td>Ca-d (Cmol+ kg-1)</td>
<td>0,38</td>
</tr>
<tr>
<td>Na-d (Cmol+ kg-1)</td>
<td>0,54</td>
</tr>
<tr>
<td>Mg-d (Cmol+ kg-1)</td>
<td>0,20</td>
</tr>
<tr>
<td>KCl-d (Cmol+ kg-1)</td>
<td>10,75</td>
</tr>
<tr>
<td>Al-d (Cmol+ kg-1)</td>
<td>2,22</td>
</tr>
<tr>
<td>H-d (Cmol+ kg-1)</td>
<td>0,33</td>
</tr>
<tr>
<td>Kejenuhan Al (%)</td>
<td>57,51</td>
</tr>
<tr>
<td>Fraksimasi P</td>
<td></td>
</tr>
<tr>
<td>- A-1-P (mg P 100 g-1)</td>
<td>83,13</td>
</tr>
<tr>
<td>- Fe-P (mg P 100 g-1)</td>
<td>152,50</td>
</tr>
<tr>
<td>- Ca-P (mg P 100 g-1)</td>
<td>16,88</td>
</tr>
<tr>
<td>Agihan kotoran partikel tanah (kiloalat tenaga lempung)</td>
<td>32,12</td>
</tr>
<tr>
<td>- Pasir (%)</td>
<td>19,87</td>
</tr>
<tr>
<td>- Liat (%)</td>
<td>48,01</td>
</tr>
<tr>
<td>- Debu (%)</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Nilai perubahan pH tanah yang selama inkubasi berkisar antara 3,83 - 3,97 untuk kontrol dan antara 4,04 - 4,40 untuk tanah yang diberi bahan organik dari kotoran ayam. Dalam hal ini bahan pemberian kotoran ayam mampu memperbaiki keamanan tanah aktual, akibat penurunan pH tanah secara nyata mulai mencapai setelah tanah dikandung lebih dari 2 Minggu (Tabel 2). Dengan demikian secara umum pembuatan kotoran ayam melalui 10 ton perkebunan mampu meningkatkan pH tanah antara 0,07 sampai 0,22 unit atma di bawah 5 %. Hasil penelitian yang mirip juga telah dilaporkan oleh Budianta (1999), bahwa
pemberian bahan organik (yang berasal dari biji-kacang kedelai [Macrocarpa pruriens] dengan takaran 3,42 – 6,84 ton/ha berat kering) namun memperbaiki keanam tanah atau meningkatkan pH tanah antara 0,08 sampai 0,2 unit.
Pada minyak kacang setelah inkubasi diperoleh penurunan pH yang paling tinggi yaitu antara 4,16 – 4,46, kemudian menurun kembali setelah dilakukan penurunan inkubasi. Nilai pH tanah yang paling ber-
sar diperoleh pada kelasam kotoran ayam 30 ton/ha da-engan nilai pH 4,40 atau ter-
jadi peningkatan pH sekitar 0,24 unit atau hanya sekitar 6% dibandingkan dengan
dengan kontrol. Hasil ini disuppor ditimpulkan bahwa penurunan pH organik yang
berasal dari kotoran ayam pada tanah Ultisol dengan waktu inkubasi yang
perbeda (hanya 8 minggu) tidak mempengaruhi pH tanah secara drasatis. Namun
demikian hasil ini seterusnya menunjukkan keterlambatannya keterasana kotoran
ayam pada tanah minyak terhadap mesang-mesang mampu memperbaiki pH tanah, namun
masih dalam batas 10%.
Mekanisme terjadinya peningkatan pH akibat pemberian kotoran ayam kemungkinan ada beberapa alasan: 1) terjadinya
reduksi di lingkungan tanah yang tercinta

| Tabel 2. Perubahan pH Ultisol setelah diberi kotoran ayam selama 8 minggu inkubasi
Pemberian kotoran ayam (ton/ha) | Perubahan nilai pH tanah | Pemberian nilai pH tanah (minggu)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>3,96 a</td>
<td>3,83 a</td>
</tr>
<tr>
<td>10</td>
<td>4,11 a, 4</td>
<td>3,95 b</td>
</tr>
<tr>
<td>20</td>
<td>4,19 a</td>
<td>4,13 b</td>
</tr>
<tr>
<td>30</td>
<td>4,39 a</td>
<td>4,29 c</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang dicetak oleh huruf kecil yang sama pada setiap kolom tidak ada beda nyata
pada taraf 5%.

dalam waktu yang relatif cepat akibat penurunan kotoran ayam sebagai hasil dari aktivitas intensif jasad reini, sehingga
diambil kadar Fe atau Mn etkisa yang menghasilkan ion OH (Asghar & Kundu, 1980, Pocknee & Summer
1994) seperti dalam reaksi:

\[\text{MnO}_2 + 2 \text{CH}_3 \rightarrow \text{MnO}^+ + 2 \text{OH}^- \]
dan atau 2) terjadi makin penurunan ligan oleh gula hidrolik dari bahan baku organik dengan A atau Fe
hidrolik ekstra yang dilaporkan oleh bahan organik yang berasal dari kotoran
ayam seperti asam malat, sitrat dan tartrat, seperti reaksi yang telah dilaporkan oleh
Hun & Amin (1989) sebagai berikut:

\[\text{Al(OH)}_3 + 3 \text{H}^+ \rightarrow \text{Al}^3+ + 3 \text{OH}^- \]

Sedangkan perubahan pH tanah akibat pemberian bahan fosfat dapat dibaca pada
Tabel 3. Pada Tabel 3 terlihat bahwa penurunan pH Ultisol yang terjadi selama
inkubasi 8 minggu menunjukkan kisaran nilai pH tanah antara 3,65 sampai 3,88 untuk
tanah yang diberi bahan fosfat dan mampu meningkatkan pH tanah sebesar 0,52
sampai 0,84 unit. Kalau perubahan pH tanah diteruskan, penurunan pH tanah
mampu meningkatkan pH tanah mineral mesin dibandingkan dengan penurunan kotoran
ayam.

| Tabel 3. Perubahan pH Ultisol setelah diberi bahan fosfat selama 8 minggu
Pemberian kotoran ayam (ton/ha) | Perubahan nilai pH tanah (minggu)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>3,65 a</td>
<td>3,69 a</td>
</tr>
<tr>
<td>10</td>
<td>4,05 a</td>
<td>3,97 b</td>
</tr>
<tr>
<td>20</td>
<td>4,21 b</td>
<td>4,17 b</td>
</tr>
<tr>
<td>30</td>
<td>4,53 a</td>
<td>4,31 c</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang dicetak oleh huruf kecil yang sama pada setiap kolom tidak ada beda nyata
pada taraf 5%.

Fosfor yang tercinta

Hasil analisis statistik menunjukkan bahwa pemberian kotoran ayam dan
dan bahan fosfat secara mandiri mempunyai interaksi yang berpengaruh signifikan
nya terhadap pemberian (P) terus-dal dalam tanah yang
dukung dengan laporan Bray-I.
Pada pemberian kotoran ayam dengan
tanah 10 ton/ha mampu meningkatkan P tercinta sekitar 27% dengan nilai 7.01 me-
ningkat menjadi 8.88 mg/g atau berbeda signifikan
Akan tetapi apabila pemberian kotoran
ayam diinginkan menjadi dua kali, peningkatan ketersediaan P yang
bisa difavorisasi dengan mampu membantu meningkatkan tanah tanah 20
ton/ha. Sedangkan pada pemberian tanam
mengalami peningkatan signifikan menjadi tiga kalahnya yaitu
sekitar 30 ton/ha, maka peningkatan P tercinta tanah 30 ton/ha dapat mencapai lebih
33% dibandingkan dengan kontrol dan
pada tanah ini, nilai P tercinta sudah
truekernya berbeda tinggi yaitu 10,75 mg/g
tanah sampai 25 mg P/kg g (Table 4).

Terjadinya peningkatan P tercinta akibat
pemberian kotoran ayam kemungkinan besar dapat melalui proses langsung
dalam kompleks fosfat yang dipecahkan dari
kotoran ayam, atau melalui mekanisme
tidak langsung yaitu penurunan

terhambat dengan membiakkan kotoran
ayam. Lindastan (1997) juga telah melaporkan
bahwa tanah-tanah mineral yang memiliki banyak organik yang tinggi
akan memanfaatkan Aluminium tertarik
dalam tanah.

Harisjui dan BNT dengan arus 5% untuk
pengaruh pemberian bahan fosfat (BP)
terduga dalam tanah menunjukkan
nya dalam persentase 100 kg BP/ha dapat memperkaya P tercinta tanah dalam jumlah
membantu tanaman hampir hanya 4% dan hasil ini
menggunakan jalan atau tanam tanaman

Agrosci Vol. (7) No. 2, 2003 161
Agrosci Vol. (7) No. 2, 2003 162

160
sangat lambat dilarutkan dengan air. Untuk itu penggunaan bentuk fosfat sebagai asamfors dapat diminimalisir untuk pemupukan P yang berpeluang lambat untuk tanah-tanah yang sangat musnah. Hasil penelitian lain yang sangat menarik dari percobaan ini yaitu pemberian BP mampu menurunkan Al tertukar dalam tanah secara drastis (Tabel 5). Proses pemaran Al ini ditunggu terus-menerus setelah Al oleh ion hidroklorid yang diperoleh dari hasil hidrolisis kalsium oksida yang dimiliki oleh batuan fosfat.

Tabel 4. Penghambatan keterpenatan P dan kelarutan Al in situ setelah diberi kotoran ayam

<table>
<thead>
<tr>
<th>Pemberian kotoran ayam (ton/ha)</th>
<th>P tersedia (µg/g)</th>
<th>Al-dd (Cmol (+kg²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7,09 a</td>
<td>1,75 a</td>
</tr>
<tr>
<td>10</td>
<td>8,96 b</td>
<td>1,15 a</td>
</tr>
<tr>
<td>20</td>
<td>10,75 c</td>
<td>0,57 b</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang dibidik oleh huruf kecil yang sama pada setiap kolom tidak ada beda nyata pada taraf 3%.

Tabel 5. Penghambatan keterpenatan P dan kelarutan Al in situ setelah diberi batuan fosfat

<table>
<thead>
<tr>
<th>Pemberian kotoran ayam (ton/ha)</th>
<th>P tersedia (µg/g)</th>
<th>Al-dd (Cmol (+kg²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8,41 a</td>
<td>1,74 a</td>
</tr>
<tr>
<td>10</td>
<td>8,78 b</td>
<td>1,16 a</td>
</tr>
<tr>
<td>20</td>
<td>9,12 b</td>
<td>0,82 b</td>
</tr>
<tr>
<td>30</td>
<td>9,25 c</td>
<td>0,38 b</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang dibidik oleh huruf kecil yang sama pada setiap kolom tidak ada beda nyata pada taraf 3%.

Pemberian batuan fosfat sebesar 100 kg/ha dapat menurunkan Al yang dapat dipertahankan lebih dari 30% dibandingkan dengan kontrol. Apabila takaran batuan fosfat ditingkatkan lebih dari 200 kg/ha, maka lebih dari 50% Al-dd menurun secara tajam.

Ketika dilakukan pengaruh interaksi antara pemberian kotoran ayam dan batuan fosfat terhadap keterpenatan P dalam tanah tanpa bahan pemberian kedua peralihan yang diberikan secara bersama-sama dalam waktu 3 bulan yang pendek kurang efisien dalam meningkatkan P tersedia tanah Ultisol walaupun antar peralihan kom-biasa terdapat perbedaan nyata (Tabel 6). Hal ini tampak bahwa pemberian kotoran ayam pada takaran 30 ton/ha sudah banyak, pengaruhnya tidak bertahap nyata apabila dikombinasi dengan berbagai takaran batuan fosfat.

Dengan demikian takaran kedua amelioran yang dapat diikuti kombinasi dari hasil penelitian ini yaitu pemberian kotoran kotoran ayam 10 ton/ha yang dikombinasi dengan 300 kg BP/ha, dimana ke-300 kg BP/ha meningkatkan P tersedia lebih dari 50% yang sekali sejahtera terjadi pemberian Al-dd sekitar lebih dari 50% dan kedua kombinasi peralihan tersebut hasilnya tidak terbaca nyata.

Pengaruh interaksi pemberian kotoran ayam dan batuan fosfat terhadap P tersedia pada Al dapat diperlihatkan pada Tabel 6.

Tabel 6. Pengaruh interaksi pemberian kotoran ayam dan batuan fosfat terhadap P tersedia dan Al yang dapat dipertahankan

<table>
<thead>
<tr>
<th>Kombinasi perlakuan</th>
<th>Fosfat tersedia (µg/g)</th>
<th>Al-d (Cmol (+kg²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6,40 a</td>
<td>2,57 k</td>
</tr>
<tr>
<td>10</td>
<td>7,15 bc</td>
<td>1,82 i</td>
</tr>
<tr>
<td>20</td>
<td>7,91 ab</td>
<td>1,25 g</td>
</tr>
<tr>
<td>30</td>
<td>7,48 bc</td>
<td>0,62 d</td>
</tr>
<tr>
<td>0</td>
<td>8,27 d</td>
<td>1,92 j</td>
</tr>
<tr>
<td>10</td>
<td>8,78 de</td>
<td>1,25 g</td>
</tr>
<tr>
<td>20</td>
<td>8,73 de</td>
<td>0,97 ef</td>
</tr>
<tr>
<td>30</td>
<td>9,71 f</td>
<td>0,45 c</td>
</tr>
<tr>
<td>0</td>
<td>8,42 d</td>
<td>1,43 h</td>
</tr>
<tr>
<td>10</td>
<td>8,70 de</td>
<td>0,94 e</td>
</tr>
<tr>
<td>20</td>
<td>9,70 f</td>
<td>0,63 d</td>
</tr>
<tr>
<td>30</td>
<td>9,08 c</td>
<td>0,29 b</td>
</tr>
<tr>
<td>0</td>
<td>10,67 g</td>
<td>1,04 f</td>
</tr>
<tr>
<td>10</td>
<td>10,49 g</td>
<td>0,63 d</td>
</tr>
<tr>
<td>20</td>
<td>11,62 c</td>
<td>0,44 c</td>
</tr>
<tr>
<td>30</td>
<td>10,80 g</td>
<td>0,17 a</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang dibidik oleh huruf kecil yang sama pada setiap kolom tidak ada beda nyata pada taraf 3%.

SIMPULAN DAN SARAN

Berdasarkan hasil penelitian ini dapat disimpulkan bahwa Ultisol dari Sembawa, Sumatera Selatan mempunyai kemampuan yang tinggi dengan tingkat kejadian Al lebih dari 50%. Pemberian kotoran ayam semai takaran 20 ton/ha banyak menurunkan pH tanah di bawah 10%. Sedangkan pemberian fosfat semai 300 kg/ha dapat meningkatkan pH tanah mencapai 20%. Dengan demikian pemberian fosfat lebih efisien untuk meningkatkan pH tanah mineral asam. Hasil yang dirancang bahwa pemberian batuan fosfat yang didistribusi dalam waktu peyadak (hanya 8 minggu) tidak mampu menurunkan P tersedia secara drastis, karena peningkatan P tersedia masih sangat rendah yaitu di bawah 10% bahkan terjadi penurunan pengaruh P tersedia dalam tanah masih lebih rendah dibandingkan dengan pemberian kotoran ayam dan fosfat.

DAFTAR PUSTAKA

TEKNIK PENGENDALIAN GULMA SECARA TERPADU PADA TANAMAN KEDELAI KULTIVAR KIPAS PUTIH: PENGGARUHNYA TERHADAP KARAKTERISTIK HASIL

Integrated Weed Control Technique on Soybean Kipas Putih Cultivars: Its Effect to Characteristics of Yield

Monawar Khalil

ABSTRACT

A research has been conducted in Agriculture Extension Service District of Dari Lembah, Aceh Besar, during September 1999 until January 2000. The objective of the research was to observe the spacing and technique of weed control as integrated weed control on characteristics of soybean yield. Randomized Complete Block Design is used by factorial. Spacing factors were 40 cm x 15 cm and 40 cm x 20 cm. While technique of weed control were: control, hand weeding at 21st and 47th days after planting (DAP), and glyphosate herbicide 1.44 kg a.i. / ha. The result showed that both spacings and technique of weed control individually, effect number pod per plant and number seed per plant. No there is interaction between spacings and technique of weed control on number pod and seed per plant, and seed dry yield.

Keywords: Spacing, technique of weed control, soybean

PENDAHULUAN

Dalam pengembangan tanaman kedelai di Indonesia, ada faktor teknis yang menjadi kendala utama dalam pencapain potensi dan tingkat produktivitas yang tinggi, yaitu: genetik tanaman yang rendah, cara bercocok tanam yang belum sempurna, gangguan dari hama, penyakit, serta kekurangan gula (Monawar & Sumamto, 1996). Selain itu, fakta bahwa tanaman kedelai mudah diperintah oleh gulma di-pengaruh oleh faktor lingkungan penguaman gula (Hassanudin et al., 2001a) densitas gulma dan tanaman (Me-Whorter & Barretine, 1975), kultivar kedelai (Hassanudin & et al., 2001b) waktu tanam kedelai, tanam, dan jarak tanam (Eaton et al., 1976). Kemudian, dengan penanaman gula terhadap potensi produksitivitas tanaman, maka perlu diusahnakan penguaman gula secara terpadu dan satu tanaman kedelai yang dapat dianjurkan adalah menanam hingga 4 - 14 hari setelah padi dipanen sehingga gula tidak menjadi sembilan, dan tanaman kedelai dengan jarak tanam rapat (20 cm x 20 cm) atau populasi sebesar 500.000 tanaman per hektar, menghasilkan bumi kedelai yang dinyatakan kecakapan

1 Ir. Monawar Khalil, M.S. Sip Pengujid Program Studi Tanah Jawa Barat, Universitas Pertanian Bogor, Umeer, Bunda Aceh