Basic Medical Research

Polymorphisms in the pfcr1 and pfmdr1 genes in Plasmodium falciparum isolates from South Sumatera, Indonesia

Irsya Sulaika1, Dwi Hairiyani2, Churri Amin2
1 Department of Pharmacology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
2 Department of Parasitology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia

Abstract

Metode: Studi ini melibatkan isolasi dan manipulasi genetik dari gen yang berhubungan dengan resistensi malaria pada isolat P. falciparum di Samosir, Lhokseumawe, dan Pematang. Metode yang digunakan adalah PCR dan restriction fragment length polymorphism (RFLP).

Hasil: Polimorfisme pada gen pfcr1 76-781, dan pfmdr1 86-921 ditemukan pada semua isolat. Perubahan ini berhubungan dengan penghambatan aksi chloroquine dan leads to the development of new drugs to treat malaria.

Kekurangan: Penelitian ini menggunakan polimorfisme RFLP yang dapat membedakan genetik dari isolat yang berbeda. Metode ini memerlukan peralatan khusus dan waktu yang lama.

Kata kunci: chloroquine, Plasmodium falciparum, pfcr1, pfmdr1

pISSN: 0853-577X • eISSN: 2332-4889 • http://doi.org/10.11911/0853577X • Med J Indonesia. 2014; 23:3-8

Keywords: chloroquine, Plasmodium falciparum, pfcr1, pfmdr1

pISSN: 0853-577X • eISSN: 2332-4889 • http://doi.org/10.11911/0853577X • Med J Indonesia. 2014; 23:3-8

Copyright ©2014 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly cited.

http://ejurnal.unila.ac.id
M. Adham
D. Rohdana
I.D. Mayangsari
Z. Masa

Brief Communication

Rizki
B.B. Siwanto

Delayed diagnosis of nasopharyngeal carcinoma in a patient with early signs of unilateral ear disorder

Nasopharyngeal carcinoma is frequently overlooked due to nonspecific manifestations. This fact often leads to delayed diagnosis and treatment.

Challenges on management of heart failure in Indonesia: a general practitioner's perspective

Heart failure patients are still incorrectly diagnosed and inadequately treated in Indonesian primary care, despite the availability of current guidelines.
Medical Journal of Indonesia

TABLE OF CONTENTS

Volume 23, Number 1, February 2014, page 1-62, pISSN 0853-1773 - eISSN 2252-8083

Nafrialdi
Editor note
Year of transformation

1

Basic Medical Research

I. Saleh
D. Handayani
C. Anvar
Polymorphisms in the pfcr and pfmdr1 genes in Plasmodium falciparum isolates from South Sumatera, Indonesia
All P. falciparum isolates in South Sumatera carry both polymorphism in the pfcr and pfmdr1 genes.

3

H.D. Ismail
Phedy
E. Khelilne
A. A. Yusuf
N. D. Yulisa
Role of allogenic mesenchymal stem cells in the reconstruction of bony defect in rabbits
This study evaluated the transplantation of mesenchymal stem cells, particularly in combination with HA-CaSO4 pellets, towards the calvaria thickness and osteocyte index in bone defect.

9

R. Mustarickie
J. Levitas
J. Arpina
In silico study of curcumol, curcuminol, isocurcumol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer
This report focus on the in silico studies of curcumol, curcuminol, isocurcumol, and β-sitosterol as inhibitors of estrogen receptor alpha of breast cancer.

15

Clinical Research

E.R. Guanardi
B. Affandi
Serum levonorgestrel concentration and cervical mucus viscosity after six months of monoplan implantation
Serum levonorgestrel concentration is still above therapeutic level until the sixth month of implantation and viscosity of cervical mucus increased immediately following implant insertion.

25

M.R. Ahmad
Hanna
Effect of equiosmolar solutions of hypertonic sodium lactate versus mannitol in cranioectomy patients with moderate traumatic brain injury
Half-molar HLS was as effective as 20% mannitol to produce brain relaxation, with better homodynamic stability and gave a significant increase in blood glucose level.

20

A.R. Susanto
C. Kritizanda
D.S. Tan
H.Y. Ong
D. Priatama
R. Soeparwata
Incidence of venous thromboembolism among patients who underwent major surgery in a public hospital in Singapore
VTE is a serious complication of major surgery. Administration of pharmacologic thromboprophylaxis is advisable

36

H. Turnip
A. Ratnamwati
A. Talasar
F. Yunus
A. Kekalih
Comparison of the effects of treadmill and ergocycle exercise on the functional capacity and quality of life of patients with chronic obstructive pulmonary disease
Treadmill and ergocycle exercises are some of the reconditioning exercise program to increase the physical capacity and ability to perform daily activities in stable COPD patients.

42

Case Report

T. Sareo
Y.S. Devi
L.J. Sligh
Hepatocellular carcinoma in situs inversus totalis: a case report
Development of hepatocellular carcinoma (HCC) in situs inversus totalis is rare and such condition should be kept in mind while discussing left hypochondrial mass, as diagnostic dilemma may arises in a patient with undiagnosed situs inversus totalis.

48
Focus and Scope

Medical Journal of Indonesia (abbr: Med J Univ Indonesia) accepts manuscript in basic medical research, clinical research, community research, case report, review article, and brief communication. The journal publishes articles in health sciences (medicine; public health; biology and life sciences; biomedical sciences).

About Us

The Medical Journal of Indonesia was founded in 1991 as the Medical Journal of the University of Indonesia (abbr: Med J Univ Indonesia). It has been published quarterly consistently and continuously since then. The scope of the journal is broad, covering a wide range of medical sciences. The aim of the journal is to provide biomedical sciences to researchers, public health researchers, and other health care professional with the media to publish their research work.

Peer Review Process

The submitted manuscript is first reviewed by an editor. It will be evaluated in the office whether it is suitable with our focus and scope or has a major methodological flaw. Every submitted manuscript which passes this stage will be reviewed by two reviewers. One of the reviewers is appointed from other institutions (national or international). The reviewers' comments are then sent to corresponding author to take the necessary actions and responses. The decision of the revised manuscript will then be evaluated in editorial board meeting. The final decision of whom is sent to the corresponding author.

Publication Frequency

This journal is published quarterly.

Open Access Policy

This journal is an open access journal which provides immediate, worldwide, barrier-free access to the full text of all published articles without charge readers or their institutions for access. Readers have right to read, download, copy, distribute, print, search, or link to the full texts of all articles in Medical Journal of Indonesia.

Abstracting and Indexing

Index Medicus for South-East Asia Region (IMSEAR); CAB Abstracts; Global Health; HINARI; Directory of Open Access Journals (DOAJ); Directory of Research Journal Indexing (DRJI); Google Scholar; JournalTOCs; Ulrichsweb Global Serial Directory; WorldCat; New Jour; Electronic Journals Library.

Advertising Policy

Editorial materials will not be influenced by advertisement. Readers can criticize the advertisement by sending it to the office. Advertisement will appear in the print or online version depending on request. For all inquiries, contact the Medical Journal of Indonesia editorial office at Faculty of Medicine Universitas Indonesia, Jalan Selatmu Raya 6, Jakarta Pusat 10430, Indonesia; tel/fax: +62-21-2202178; e-mail: mjui@ui.ac.id.

Copyright Notice

Faculty of Medicine Universitas Indonesia as publisher reserves the right of first publication of all published material and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/). All statements in articles are the responsibility of the authors.

Subscription

The printed issue should be subscribed for a full calendar year. The price per volume (four issues) and postage included: international USD 160, for ASEAN countries USD 100, for Indonesia: institutional IDR 209,000, individual IDR 180,000, and student IDR 100,000.
III cuts the mutant allele into two fragments 248 bp and 124 bp, while the wild-type allele remains undigested. Five of the 25 isolates did not give interpretable results. Of the remaining 20 isolates, all of them (100%) carried the mutant allele (Figure 2).

**Figure 2. RFLP for detecting Y16 polymorphism.
All samples are mutant alleles. Amplification 372 bp digested by A0 III into 248 and 124 bp when polymorphism N86Y is present.**

DISCUSSION

Sample collection of this research was done in dry season, from April to July 2012. Transmission of malaria in dry season is low with the result a few number of sample could be collected. In addition, some isolates may fail to be amplified due to the low density of parasitemia. According to Scopel et al., the low mean of parasitemia cause negative PCR result. Besides, sensitivity of malaria parasite to be detected by PCR was influenced by the method of sampling and storage. Improper blood storage cause DNA fragmentation, thus making it difficult for amplification.\(^{15}\)

The isolates of *P. falciparum* examined in this study were found to carry multiple genetic polymorphisms associated with resistance to chloroquine. Although the molecular basis for the *P. falciparum* resistance to chloroquine remains uncertain, evidences indicate that resistance is multigenic.\(^{19}\)

The *pfcr* gene is located on chromosome 7 and it has been shown to associate with the inheritance of chloroquine resistance through genetic crossing.\(^{11}\) This gene encodes a 425-amino acid-long putative transporter protein that localizes to the digestive vacuole membrane of the parasite and effectively neutralize the drug via a mechanism that efflux chloroquine from the digestive vacuole and pH regulation.\(^{12}\) Eight point mutations have been identified in *pfcr* gene, i.e. M74I, N75S, K76T, A120S, Q271E, N326S, L364T, and R371H, which have been associated with chloroquine resistance.\(^{20,23}\) The K76T mutation is strongly associated with the chloroquine resistance phenotypes in field and clinical studies.\(^{15,17}\) Mutation in codon 76 have been found in CQR *P. falciparum* strains all over the world and become the principal determinant of CQR,\(^{15,18}\) although it was also present to a lesser frequency in chloroquine-sensitive strain.\(^{16}\) This evidence suggests that additional mutations in other genes are necessary for conferring CQR, or other mechanism of resistance also appear to be involved.\(^{15,14}\)

In addition the role of mutations in *pfmdr1* in the modulation of CQR was shown.\(^{22}\) Mutations in the *pfmdr1* gene, i.e. N86Y, S1034C, N1042D, and D1246Y have been associated with CQR.\(^{21}\) The *pfmdr1* gene is a member of the ATP-binding cassette (ABC) transporter family that encodes P-glycoprotein. The *pfmdr1* gene is located on chromosome 5 and may have a modulatory effect in parasite susceptibility to CQ.\(^{15}\) Although the 86Y allele is widespread in Asia and Africa, its association with CQR is unclear.\(^{15}\) Nevertheless, the role of *pfmdr1* in this regard could not be excluded.

Previous field-based studies in Indonesia have reported that the 76T polymorphism of *pfcr* is associated with CQR *in vivo* and *in vitro*, and the allele has the potential to be used as a marker for chloroquine treatment failure.\(^{19,25}\) Other studies in Indonesia have associated the 86Y allele of the *pfmdr1* gene to CQR both *in vivo* and *in vitro*.\(^{24}\) Our interpretable findings showed that all *P. falciparum* isolates in South Sumatera carry both polymorphism in the *pfcr* and *pfmdr1* genes simultaneously. The high prevalence of the *pfcr* T76 allele found in this study is consistent with rates of 65% to 100% reported previously from different geographic regions.\(^{19}\) In western Indonesia, such as North Sumatera, Lampung, Central Java, East Kaimantan, all asymptomatic and mildly malaria patients were carrying polymorphism in both *pfcr* 76T and *pfmdr1* 86Y genes.\(^{4}\) Meanwhile in eastern Indonesia the situation was more varied. Northern Sulawesi had a resistant profile at these two codons, whereas southern Sulawesi had a lower frequency of *pfmdr1* 86Y polymorphism, but *pfcr* 76T was found in all parasite population.\(^{4}\) This situation was similar in Papua, Indonesia.\(^{4}\) Our present results may reflect the failure of treatment with the standard dose of chloroquine within the last few years in South Sumatera. This finding strengthens the previous research, which stated that resistance to
mixtures containing ddH2O (0.9 μL), Green go tag 10 μL (Promega USA), and a pair of primers. Five microliters of DNA was used as template in the first reaction and 2 μL of first round PCR product was used as template for secondary PCR. Positive (PCR 3 PF units DNA) and negative (water) controls were used in all PCR. The primers and condition of PCR were as previously described by Duraisigh et al.10

Restriction fragment length polymorphism (RFLP)

Restriction enzymes Aff III and Ape I (New England Biolabs, Beverly, MA) were used to determine the presence of polymorphism: N80Y pfmdr1 and K76T pfcrt gene. Aff III enzyme digested PCR product would show the presence of polymorphism at codon 86, while Ape I restriction enzyme would not cut amplicon when polymorphism 76T was present. Five microliters of each PCR product was digested with the restriction enzyme Aff III at 37°C and Ape I at 30°C for one hour. Digested products were electrophoresed on 15-3% agarose gels (Promega, USA) and visualized under UV transillumination after staining with ethidium bromide.

RESULTS

A total of 30 patients were enrolled in the study. Twenty five of them showed positive results in microscopy examination of blood smear stained with Giemsa. The mean age of the falciparum-infected persons was 27 years old (range 6-55 years old). Of these, 76% were male. Analysis of pfmdr1 and pfcrt gene PCR products indicated that mutant alleles of these genes have spread to all samples examined in this district (Table 1).

A 145-bp region surrounding the pfcrt K76T mutation was amplified by PCR, and the mutation was detected using the Ape I restriction enzyme. Ape I digestion produces two fragments i.e. 125 bp and 20 bp in wild-type alleles, whereas the mutant alleles remain undigested. All isolates (25 of 25) of the amplified samples carried the 76T polymorphism, but there were two heterozygous cases, where the mutant was mixed with wild-type allele (76K) (Figure 1).

The pfmdr1 N80Y mutation was similarly detected by RFLP analysis. A 172 bp region surrounding the mutation at position 86 was amplified by PCR and digested with the restriction enzyme Aff III. Aff

Table 1. Genotype profile of P. falciparum isolates from Latiah, Sekayu, Beneraja, and Palembang districts:

<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>pfmdr1 (88Y)</th>
<th>pfcrt (76T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>K/T</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>Y</td>
<td>K/T</td>
</tr>
<tr>
<td>7</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>9</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>10</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>11</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>12</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>13</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>14</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>16</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>17</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>18</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>19</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>20</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>21</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>22</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>23</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>24</td>
<td>Y</td>
<td>T</td>
</tr>
<tr>
<td>25</td>
<td>Y</td>
<td>T</td>
</tr>
</tbody>
</table>

K: wildtype (Leucine); T: mutant (Threonine); Y: mixture (Tyrosine); K/T: heterozygote mutation

Figure 1. RFLP for detecting T76 polymorphism

Sample no. 4 and 6 are heterozygote mutant alleles, others are homoygote mutant. Polymorphism K76T show a single 145 bp, whereas wild type allele digested by Ape I into 125 and 20 bp.
Malaria falciparum is a serious health problem in society, especially in tropical country, and a global threat for the inhabitants of the earth. This situation is aggravated by the increasing antimalarial drug resistance. Chloroquine (CQ) has been used worldwide as a first line drug for acute malaria treatment. Although the policy of malaria treatment in Indonesia has used artemesine combination therapy (ACT) as the first line since 2001, CQ remains the first line antimalarial agent in some regions in South Sumatera.

P. falciparum resistance to chloroquine is a big problem and continuously develops. Resistance to antimalarial drugs adds the disease burden, increases the transmission, and causes epidemics. Resistance to chloroquine was first reported in East Kalimantan & Papua in 1975. Since then, chloroquine resistance (CQR) has spread and observed all over provinces in Indonesia.

Molecular studies over the last few decades have identified some mutations in P. falciparum genes that are associated with CQR. Mutation in <i>Plasmodium falciparum</i> multidrug resistance 1 (<i>pmdr1</i>) gene, especially in codon 86, where asparagine was changed into tyrosin, have been identified to modulate higher levels of CQR. However, mutation in <i>pmdr1</i> alone is not enough to mediate CQR phenotype and that the trait is multigenic. A 76-Ser to Thr polymorphism in the <i>Plasmodium falciparum</i> chloroquine resistance transporter (<i>pfcrt</i>) gene, which is located on chromosome 7, is known to be an important key of CQR phenotype. <i>pfdrl1</i> gene codes for P.glycoprotein homologue 1 (<i>Pgly1</i>) and <i>pfgc1</i> gene codes for transporter protein. Mutation in these genes causes chloroquine efflux into the cytoplasm and modification of acid degree, which have important roles in CQR.

Epidemiologic study in all malaria endemic areas throughout the world have been conducted looking for polymorphisms in the genes and their relationships with treatment failure or resistance so chloroquine. In vitro and in vivo sensitivity tests to chloroquine in various malaria endemic area showed the existence of CQR and most of the resistant isolate carried mutant allele from those two genes.

The aim of this study is to complement the existing knowledge of in vivo & in vitro antimalarial drug responses by determining the extent of CQR associated gene polymorphisms in P. falciparum isolates in South Sumatera. Identification of these mutations is expected to provide information about malaria treatment failures in South Sumatera.

METHODS

This study was carried out with the approval of the Ethics Committee at the Medical Faculty of University of Indonesia (1) No. 059/KEPK/USU/2012.

Study sites

Three district hospitals from malaria-endemic area (Labuh, Baturaja, Sekayu) and one center of referral hospital Mohammad Hoesin Palembang in South Sumatera were selected for sample collection. Malaria in this region is mesoendemic with intense transmission between August and December in this area. CQ is still used as first line antimalarial drug except in Baturaja and Sekayu.

Sample collection

Subjects were recruited from the local outpatient hospital. Criteria for participation in this study were age of 5 years or more and symptoms of malaria (e.g., fever, chills, headache). Exclusion criteria were pregnancy, history of recent treatment with antimalarials, and severe or complicated malaria.

After obtaining informed consent, 5 ml of venous blood was drawn form each patient. Blood samples were collected in EDTA-coated vacuum tubes. Sample collection (all) was performed during April through July 2012. <i>P. falciparum</i>-infected samples as received by microscopic examination of a slide smear were used for DNA isolation. In addition, demographic data (age and sex) of all recruited subjects were noted.

Extraction of DNA

Parasite DNA was extracted from the blood samples using Chelex-100 ion exchanger (Bio-Rad USA) according to the procedure described previously. The DNA was either used immediately for polymerase chain reaction (PCR) or stored at -20°C for later analysis.

Polymerase chain reaction amplification

Nested PCRs were performed for <i>pfdrl1</i> and <i>pmdr1</i> genes. All reactions were carried out in 25 μL reaction

chloroquine has spread to all malaria endemic areas in Indonesia.45,46 including South Sumatera.

It is generally accepted that pfcr is the principal determinant of CQR. However, it is not possible to predict the degree of CQR based on pfcr genotype alone or even in combination with pfmdrl genotype.47 It is clear from the data that parasite isolates with very low IC50 levels indicating in vitro sensitivity to chloroquine usually carry the pfcr Y76 allele.48 Other recent studies revealed that many patients with apparently sensitive response to chloroquine therapy were infected with mutant parasites. It means that other factors, including host immunity, may have influence on clinical outcomes after administration of chloroquine. In some areas with high transmission, some patients seem to be able to clear their parasitemia even in the presence of the pfcr K76T mutation.49

In conclusion, our results confirm that PCR-RELP technique provide a simple and rapid method of detecting polymorphisms in genes that may predict CQR. Although the identification of the polymorphisms in the pfcr and pfmdrl genes provides a significant indicator of CQR, further studies are needed to determine the role of these polymorphisms in the in vivo and in vitro responses to drug treatment.

Acknowledgments

We thank to Directorate General of Higher Education Ministry of Education and Culture; Rektor Universitas Sriwijaya Prof. Dr. Badiash Perizade, MBA and Prof. Dr. Muhammad Said, MSc as Director of Uinsit Research Institute for financial support.

Conflict of interest

This work was supported by Hibah Fundamental contract no. 094/c/UN9.3.1/L/PL/2012. The authors declare that this study is free of conflict of interest.

REFERENCES