PROSIDING

SEMINAR NASIONAL HASIL PENELITIAN BIDANG PERTANIAN

"PERTANIAN TERINTEGRASI UNTUK MENCAPAI MILLENNIUM DEVELOPMENT GOALS (MDGS)"

PALEMBANG, 20-21 OKTOBER 2010

Volume I
Bidang Agroteknologi

FAKULTAS PERTANIAN
UNIVERSITAS SRIWIJAYA
2010
Tentang Perubahan atas Undang-Undang No. 12 Tahun 1997 Pasal 44 tentang Hak Cipta

Pasal 72

1. Barang siapa dengan sengaja dan tanpa hak mengumumkan atau memperbanyak suatu ciptaan atau member i izin untuk izin itu, dipidana dengan pidana penjara paling singkat 1 (satu) bulan dan/atau denda sebesar Rp. 1.000.000,00 (satu juta rupiah), atau pidana penjara paling lama 7 (tujuh) dan/atau denda paling banyak Rp. 5.000.000.000,00 (lima miliar rupiah).

2. Barang siapa dengan sengaja menyerahkan, menyita, menyembunyikan, mengedarkan, atau menjual kepada umum suatu ciptaan atau barang hasil penyelenggaraan Hak Cipta atau Hak Terkait sebagaimana dimaksud pada ayat (1), dipidana dengan pidana lama 5 (lima) tahun dan/atau denda paling banyak Rp. 5.000.000.000,00 (lima ratus juta rupiah)
DAFTAR ISI

<table>
<thead>
<tr>
<th>No</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integrasi Perkebunan dan Peternakan Sebuah Pengalaman dan Antisipasi Masa Depan</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Peluang Perkebunan Kelapa Sawit Berintegrasi Dengan Sapi Di Sumatera Selatan</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Agroforestry Alias Wanatani dengan Pendekatan 'SUPK' Prof Fachrunnezie Sijarkawi, Ph. D</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Respar Beberapa Genotipe Jagung Hibrida Umur Genjah Terhadap Infeksi Gendawan Fusarium Sp. Amrizal Nazar Dan Andaraas Mn</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Jarak Pagar (Jatropha Curcas L), Tanaman Menyebab Silang Atau Menyerbuk Sendiri Andi Wijaya</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Phenotypic Variation Of 12 Accessions Germ Plasm Arowroot (Maranta Arundinacea) From West Jawa Based On Morphology-Agronomy Traits And Nutrition Content Apriani Simanjorang</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Metode Analisis Resiko Kekegiran Dalam Penilian Potensi Air Untuk Budidaya Tanaman Pangan Di Lahan Kering Oleh Bakri, Momon Sodik Imanudin Dan Robiyanto H Susanto</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Potensi: Kendala Dan Peluang Pengembangan Serta Dukungan Teknologi Spesifik Lokasi Di Lahan Pasang Surut Sumatera Selatan Budi Raharjo Dan Yantor Hutapea</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>Biologi Kutu daun Lipaphis Erysima Kalt (Hemiptera: Aphididae) Di Tumbuhan Inang Yang Berbada Oleh Chandra Irsan, Cheppy Wati, Siti Herlinda, Yulia Pujastuti</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>Studi Pendahuluan Preferensi Sittophilus Dryzae Pada Beras Dari Beberapa Varietas Padi Dewi Rumbaima Mustikawati</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>Kejadian Serangan Hama Pada Perbanyakan Benih Beberapa Varietas Padi Sawah Dewi Rumbaima Mustikawati, Junita Barus Dan Ratna Wylis Arif</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>Kejadian Karakteristik Agronomi Populasi Jagung Hasil Persilangan Antara Tanaman Berkadar Protein Tinggi Dengan 10 Tanaman Yang Toleran Tanah Basam Oleh</td>
<td>75</td>
</tr>
</tbody>
</table>

Daftar Isi
Prosidings Seminar Nasional Peneelitian Bidang Pertanian
Pelembang, 20-21 Oktober 2010
<table>
<thead>
<tr>
<th>No.</th>
<th>Judul Karya</th>
<th>Nama Penulis</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Respon Tanaman Lidah Mertua (Sansevieria Trifasciata Prain)</td>
<td>Junita Barus dan Elma Basri</td>
</tr>
<tr>
<td>26</td>
<td>Kultivar "Sarang Burung" Terhadap Peradaman Koleksi</td>
<td>L. N. Sulistyowaningih, Susalwati Eka Puspita</td>
</tr>
<tr>
<td>27</td>
<td>Implementasi Teknologi Budidaya Tanaman Kentang Dengan Menggunakan Bibit BERMUTU Tinggi Di Prima Tani Tanah Utara, Sumatera Utara</td>
<td>Loso Winarto, Lermanusia Halo Ho Dan M. Sitala</td>
</tr>
<tr>
<td>29</td>
<td>Budidaya Tanaman Sela Karet Buntuk Meningkatkan Produktivitas Lahan</td>
<td>M.J. Rosyid dan Tri Rapani Febbiandi</td>
</tr>
<tr>
<td>30</td>
<td>Eksporasi Dan Karakterisasi Mikoriza Dari Tanah Yang Tercemar Hidrokarbon Aromatik Polisiklik</td>
<td>Margareththa dan Suryanto</td>
</tr>
<tr>
<td>31</td>
<td>Pengaruh Kapur, Bahan Organik Dan Bakteri Pelarut Fosfat Terhadap Fraksi P Tanah Dan Pertumbuhan Vegetatif Jagung Yang Ditanam Pada Media Ultisol</td>
<td>Marsi dan Saberuddin</td>
</tr>
<tr>
<td>32</td>
<td>Pemanfaatan Merek Molekuler Untuk Mengidentifikasi Dan Menseleksi Hasil Persilangan Pada Tanaman Mery Hasmeda</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Dukungan Teknologi Untuk Pengembangan Lahan Rawa Pusao Surut Di Sumatera Selatan Oleh</td>
<td>Imanudin M.S., Susanto R.H., dan Armanto E.</td>
</tr>
<tr>
<td>34</td>
<td>Produksi Nenas Lokal Bangka Di Lahan Podsolid Merah Kuning (PMK) Dan Tailing Pasca Penambangan Timah Bangka</td>
<td>Mustikarini ED, Lestari T, Widayastuti U, Suharsono</td>
</tr>
<tr>
<td>35</td>
<td>Pengendalian Hama Penyakit Terpadu Pembibitan Lada Di Lampung Timur</td>
<td>Nena Mulyanti</td>
</tr>
<tr>
<td>36</td>
<td>Uji Daya Simpan Inokulan Bakteri Endofitik Dalam Berbagai Bahan Pembawa</td>
<td>Nuni Gofar</td>
</tr>
<tr>
<td>37</td>
<td>Pengaruh Lama Dan Intensitas Hujan Terhadap Infeksi Dan Perkembangan Penyakit Gugur Daun Corynespora Pada Lima Korn Karet</td>
<td>Nurhayati dan M. Idrus Aminuddin</td>
</tr>
<tr>
<td>38</td>
<td>Pertumbuhan Bibit Karet Setum Mata Tidur Klon P6260 Diperbanyak Dengan Media Tandan Kosong Kelapa Sawit Nusyirwan, Lucy Robiartin dan Reza Yanuar</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Pemanfaatan Lahan Pasca Tambang Batubara Sebagai Potensi Pengembangan Lahan Pertanian</td>
<td></td>
</tr>
</tbody>
</table>

Daftar Isi

Prosiding Seminar Nasional Penelitian Bidang Pertanian Palembang, 20-21 Oktober 2010
PEMANFAATAN MARKAH MOLEKULER UNTUK MENGIDENTIFIKASI DAN MENJELEKSI HASIL PERSILANGAN PADA TANAMAN

Oleh
Mery Hasmeda**

Kata Kunci: RAPD, DNA, PCR, Genetik

PENDAHULUAN

Pemulian tanaman merupakan suatu metode untuk mengeksploitasi potensi genetik tanaman serta memaksimumkan ekspresi dari potensi genetik tanaman pada kondisi lingkungan tertentu (Guzhov, 1989; Stoskopf et al., 1993). Adapun tujuan dari pemulian tanaman adalah untuk memaksimalkan potensi genetik tanaman melalui perakitan kultivar unggul baru yang berdaya hasil dan kerukunan tinggi dan mampu bertahan pada lingkungan yang ekstrim (Shivanna dan Sawhney, 1997). Pemulian secara konvensional telah banyak dilakukan khususnya pada tanaman pangan, namun pemulian secara konvensional masih memiliki beberapa keterbatasan antara lain waktu yang diperlukan cukup lama.
untuk mengintrogresikan gen-gen yang diinginkan. Selain itu jumlah genotif yang harus ditangani terutama pada saat awal seleksi sangat besar sehingga tenaga kerja yang dibutuhkan sangat banyak.

Penggunaan markah molekuler untuk menelusuri keberadaan gen-gen sasaran semakin meningkat terutama pada program silang balik (backcrossing selection). Melalui Marker Assisted Backcrossing (MAB), beberapa efisiensi pemulian tanaman dapat ditingkatkan. Melalui metode ini beberapa keuntungan antara lain: 1) jika fenotipe tetua yang mengandung gen target tidak mudah diamati, maka turunan silang balik yang terdekati dengan markah dari tetua donor pada lokus yang berdekatan atau di dalam gen target yang diselidiki mempunyai peluang keberhasilan yang besar untuk membawa gen tersebut; 2) markah juga dapat digunakan untuk menyeleksi turunan silang balik yang mempunyai porsi gen non-target lebih besar yang berasal dari plasma nutfah tetua donornya; dan 3) markah dapat digunakan untuk menyeleksi progdi terhadap yang menghasilkan rekombinasi gen yang berdekatan dengan gen target, sehingga peluang terjadinya efek pautan yang tidak diinginkan ikut bersama gen target (linkage drag) (Holland, 2005).

Tulisan ini mencoba menguraikan pemanfaatan markah DNA dalam menekan keberadaan gen target yang mengandung gen target. Pemanfaatan Markah Molekuler dalam seleksi genetic terdiri tiga tipe markah molekuler (DNA) yang umumnya digunakan saat ini antara lain: 1) markah berdasarkan pada hibridisasi DNA seperti Restriction Fragment Length Polymorphism (RFLP); 2) berdasarkan pada reaksi rantai polimerase (Polymerase Chain Reaction, PCR) dengan menggunakan sekuen-sekuen nukleotida sebagai primer, seperti Randomly Amplified Polymorphic DNA (RAPD) dan Amplified Fragment Length Polymorphism (AFLP); dan 3) markah berdasarkan pada PCR dengan menggunakan primer yang menggabungkan sekuen komplementer spesifik dalam DNA sasaran, seperti Sequence Tagged Sites (STS)

Contoh aplikasi metode MAB adalah pada pembentukan varietas Swarna-Sub1 yang merupakan hasil persilangan antara varietas Swarna dengan IR48930 (pembawa gen Sub1), pada generasi BC2F2 diperoleh galur toleran terhadap cekaman rendaman.

Penelitian molekul mengenai toleransi tanaman terhadap cekaman rendaman dengan menggunakan QTL telah banyak dilakukan tetapi masih sedikit penelitian mengenai estimasi nilai heritabilitas karakter-karakter yang berhubungan dengan cekaman rendaman. Karakter-karakter yang berhubungan dengan level toleransi terhadap cekaman lingkungan biasanya diatur oleh sejumlah gen bersifat kuantitatif (Waters et al., 1991). Pada tanaman gandum yang tercekkam rendaman memiliki nilai estimasi heritabilitas karakter hasil rendah, sedangkan pada karakter yang berhubungan dengan hasil gabah seperti kandungan klorofil, berat malai dan jumlah malai adalah tinggi (Callaku dan Harrison, 2005).

Terdapat keragaman genetik yang luas genotipe-genotipe tanaman padi yang adaptif pada daerah-daerah cekaman rendaman, berdasarkan pola isoenzim genotipe-genotipe padi tersebut digolongkan pada group III (Khush et al., 2003). Bose dan Pradhan (2005) melaporkan bahwa karakter hasil, umur berbunga 50%, jumlah malai dan tinggi tanaman memberikan kontribusi lebih dari 50% terhadap variabilitas genetik pada 35 genotipe padi air dalam yang diberi cekaman rendaman.

Penggunaan Markah DNA dalam backcrossing dapat meningkatkan efisiensi dari proses seleksi. Ada tiga level dari marker-assisted backcrossing (MAB) yang dapat dilakukan, antara lain “foreground selections”, “recombinant selection” dan “background selection” (Holland, 2005; Hospital and Charcosset, 1997; Hospital, 2005). Pemuliaan silang balik dengan memanfaatkan markah DNA dapat memfasilitasi introgesi gen pengendali karakter kuantitatif secara efektif dan efisien (Azrai, 2006).

Seleksi dilakukan dengan menggunakan markah DNA (metoda RAPD) yang merupakan PCR based marker. Adapun urutan kegiatan adalah sebagai berikut:

1. **SAMPEL JARINGAN DAUN TANAMAN** (selected plant hasil persilangan balik)
2. **EKSTRAKSI DNA**
3. **PCR**
4. **GEL ELECTROPHORESIS**
5. **MARKER ANALISIS**

Sample: sampel tanaman diambil dari daun muda yang segar lalu direndam dalam larutan buffer.

Prosedur Seminar Nasional Uenri, 20-21 Oktober 2010
EKSTRAKSI DNA

SAMPEL DAUN

Mortar and pestles

Porcelain grinding plates

PCR (Polymerase Chain Reaction)

PCR-based DNA markers

PCR Buffer + MgCl₂ + dNTPS + Taq + Primers + DNA template

THERMAL CYCLING

GEL ELECTROPHORESIS

Agarose or Acrylamide gels

Proseiding Seminar Nasional Ustim, 20-21 Oktober 2010
Agarose gel electrophoresis

PENUTUP

Penggunaan markah molekuler telah banyak dilakukan dalam penelitian pemulian tanaman di dunia termasuk Indonesia. Pemulian tanaman akan lebih cepat dibanding secara konvensional selain efisien dan efektif dari segi waktu dan juga mampu mengatasi kendala yang sering muncul dalam pemulian secara konvensional. Manfaat dari penggunaan markah molekuler telah dirasakan sangat berarti dalam mengidentifikasi progeny dalam waktu yang relatif singkat, mudah dan akurat. Pendeteksian gen-gen yang diinginkan dalam keturunan hasil persilangan dapat dikenali lebih cepat jika dibandingkan dengan teknik pemulian secara konvensional. Hasil yang dianalisispun lebih terjamin ketepatannya. Penggunaan markah molekuler dapat digunakan untuk semua teknik pemulian tanaman untuk mengetahui lebih cepat apakah gen yang kita inginkan telah berhasil masuk pada turunan yang kita inginkan.
DAFTAR PUSTAKA

