PENGARUH KARBURISASI DENGAN SERBUK BATUBARA SEMI ANTRASIT PADA BAJA KARBON MEDIUM YANG DIIQUENCHING DENGAN MINYAK OLI SAE 140, MINYAK SAWIT MENTAH DAN AIR TERHADAP KEKERASAN DAN KETANGGUHAN

Nakman, Sugeng Prasetyo
Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya
Jl. Raya Palembang-Prabumulih KM 32 Kec. Indralaya 30662 -01
E-mail: ir_nakman2001@yahoo.com

Abstrak

Elemen mesin yang di rancang untuk keperluan industri saat ini harus mempunyai kualitas yang sangat baik. Material yang di pilih harus sesuai dengan kondisi pada saat proses penambahannya. Karburisasi dan Quenching adalah salah satu usaha yang dilakukan guna untuk mencapai kebutuhan tersebut. Berdasarkan hasil pengujian dan analisa yang dilakukan kekerasan bahan material HQ 760 meningkat setelah dilakukan proses karburisasi dengan batubara dan di quenching dengan media Pelumas SAE 140, CPO (Crude Palm Oil), dan air. Peningkatan kekerasan yang paling baik adalah ketika di karburisasi dengan Pelumas SAE 140 yaitu sampai mencapai 6.2%.

Kata kunci: Karburisasi, Batubara Semi Antrasit, Quenching, Pelumas SAE 140, Air.

I. PENDAHULUAN

Penggunaan logam untuk berbagai keperluan sesuai dengan perkembangan teknologi membuat timbulnya pengetahuan tentang logam semakin lama semakin meluas, mendalam, dan khusus. Salah satu pengetahuan tentang peningkatan kekerasan permukaan pada logam adalah proses karburisasi.

Pada proses karburisasi ini dipilih media batubara Semi Antrasit (high rank coal) karena kadar karbonnya lebih tinggi dibanding jenis batubara lainnya kemudian CPO (Crude Palm Oil). Pelumas SAE 140 dan air sebagai media quenching. Proses karburisasi yang dilakukan adalah jenis karburisasi padat. Untuk itu telah dilakukan penelitian proses karburisasi dan quenching pada baja karbon medium.

Umumnya elemen mesin menggunakan bahan baja sebagai bahan baku pembuatannya. Baja yang mempunyai sifat mekanis yang kompleks sangat memungkinkan para perancang untuk melakukan peningkatan kekerasan atau perbaikan sifat baja dengan perbaikan kekerasan yang dibutuhkan secara optimal. Baja karbon medium yaitu dengan kadar karbon berkisar 0,2 s/d 0,5%, dan yang sering digunakan baja dengan kadar karbon 0,4%. Baja karbon medium memiliki potensi untuk dikarkarikan melalui proses karburisasi atau perbaikan sifat baja. Baja berkarbon medium ini akan mengalami kenaikan kekerasan yang signifikan. Meningkatkan kekerasan permukaan baja dengan media karburisasi dan quenching, material yang akan diberi perlakuan panas adalah baja karbon medium HQ 760 (high quality) dengan menggunakan proses karburisasi padat media batubara Semi Antrasit dengan waktu penahanan 45, 75, dan 105 menit, kemudian didi quenching dengan media CPO, minyak Oli SAE 140 dan air.

JURNAL REKAYASA SRIWIJAYA No. 1 Vol. 20, Maret 2011 43
Penelitian ini dilakukan dengan tujuan untuk mengetahui perubahan kekerasan dan ketangguhan baja karbon medium setelah dilakukan proses karburisasi dengan temperatur dan waktu penahanan yang berbeda kemudian diquenching dengan beberapa media.

II. TINJAUAN PUSTAKA

2.1. Sifat mekanik Baja Karbon
Sifat mekanik merupakan sifat dasar yang dapat diubah dan dipengaruhi dari luar. Pengaruh ini biasanya berupa pemanasan pada waktu dan temperatur tertentu, sehingga struktur mikro logam tersebut berubah dan sifat mekaniknya turut berubah karena pemanasan.

Sifat mekanik pada logam dapat dikontrol dengan cara perlakuan panas (Heat Treatment), sifat-sifat tersebut antara lain (Smith, 1993):
1. Kekerasan
2. Kekuatan
3. Keuletan
4. Deformasi
5. Ketangguhan

2.2. Karburisasi

Reaksi dari proses karburisasi adalah :

\[\text{CO}_2 + C \text{ (arang)} \rightarrow 2 \text{ CO} \]

\[2 \text{ CO} \rightarrow \text{CO}_2 + C \text{ (larut dalam baja)} \]

Media karbon yang dibutuhkan dalam proses ini didapatkan dari media yang berbentuk gas, cair, atau padat. Pemanasan dengan temperatur rendah mengakibatkan karbon baja tidak dapat melebur di dalam baja. Baja dan media karburisasi harus dipanaskan secara bersama-sama selama berlangsungnya proses karburisasi pada temperatur tinggi.

Adapun tujuan dari proses karburisasi adalah sebagai berikut:
1. Meningkatkan kandungan karbon.
2. Meningkatkan ketahanan aus.
3. Meningkatkan ketahanan fatik.
4. Menambah kekerasan pada permukaan logam.

2.3. Quenching
Quenching adalah proses pendinginan cepat baja dari temperatur austenitisasi pada media tertentu yang akan menghasilkan struktur martensit atau pendinginan tiba-tiba baja ke dalam media yang memiliki laju pendinginan cepat seperti air. Proses quenching banyak digunakan karena madah dalam melakukannya dan sangat efektif, selain itu terdapat banyak jenis media pendingin yang dapat digunakan seperti air, oli, dan lain-lain (Kramer et al, 1989).

Tujuan dari proses pengerasan adalah agar diperoleh struktur martensit yang keras, sekarang-kurangnya di permukaan baja. Hal ini hanya dapat dicapai jika menggunakan media quenching yang efektif.

Sehubungan dengan ukuran benda kerja sudah ditentukan sebelumnya, maka untuk menjamin agar tidak terjadi distorsi pada benda kerja harus diperhatikan media quenching yang digunakan. Hal tersebut dapat dicapai dengan menggunakan media quenching yang sesuai dengan jenis baja, tebal penampang dan besarnya distorsi yang diterima.

2.4. Ketangguhan
Ketangguhan adalah kemampuan dari suatu logam untuk mempertahankan bentuknya dengan cara menyerap banyaknya energi dari suatu material yang mempengaruhinya sampai terjadi perpatahan. Besarnya Energi impact dapat dihitung dengan menggunakan rumus sebagai berikut:

\[E_1 = P (D - D \cos \alpha) \]

\[E_2 = P (D - D \cos \phi) \]

\[E = E_1 - E_2 = P D (\cos \phi - \cos \alpha) \]

Dimana:

\[E_1 = \text{Energi potensial yang ditahan pada sudut angkat (} \alpha \text{) dari palu} \]

\[E_2 = \text{Posisi energi yang ditahan pada sudut ayun (} \phi \text{) dari palu} \]

\[P = \text{Berat palu} = 25,68 \text{ kg} \]

\[D = \text{Jarak dari pusat sumbu palu ke pusat gravitasi} = 0,6490 \text{ m} \]

\[\alpha = \text{Sudut angkat palu} = 146,5^\circ \]

\[\phi = \text{Sudut ayun setelah palu mengenai specimen} \]
III. METODE PENELITIAN

Penelitian ini dilakukan dengan metode eksperimental di laboratorium dengan didukung oleh literatur-litteratur yang menunjang. Metodologi penelitian selengkapnya dapat diuraikan sebagai berikut:

3.1. Persiapan Spesimen

Spesimen yang digunakan untuk tahapan proses karburisasi dan pengujian harus dipersiapkan secara cermat dan teliti. Hal ini berguna untuk menghindari terjadinya kesalahan dalam pengumpulan data pada saat penelitian. Spesimen yang digunakan pada proses karburisasi ini adalah baja karbon medium dengan komposisi kimia seperti dalam tabel berikut:

<table>
<thead>
<tr>
<th>Unsur</th>
<th>Kandungan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0,45</td>
</tr>
<tr>
<td>Mn</td>
<td>0,60</td>
</tr>
<tr>
<td>Si</td>
<td>0,30</td>
</tr>
<tr>
<td>S</td>
<td>0,04</td>
</tr>
</tbody>
</table>

(PT. Tira Austenit)

Spesimen yang digunakan dalam penelitian ini berjumlah 12 spesimen dengan pembagian sebagai berikut:

Tiga spesimen tanpa perlakuan yang akan dilakukan uji kekerasan, uji impak dan uji metallografi. Sembilan spesimen untuk dikarburisasi dengan temperatur karburisasi (900° C) dan waktu penahanan karburisasi (45, 75, dan 105 menit) dengan media karburisasi batubara kemudian diquenching dengan media CPO, pelumas SAE 140, dan air, setelahnya akan dilakukan uji kekerasan dan uji impak.

Spesimen ini dipotong sesuai dengan standar pengujian impak untuk metode Charpy yaitu 55 x 10 x 10 (mm) dan mengandung takik 45°, dengan jari-jari dasar 0,25 mm dan kedalaman 2 mm. Spesimen untuk pengujian ini seperti terlihat seperti pada gambar 1.

![Gambar 1. Spesimen Uji Impact](image)

3.2. Proses Karburisasi

Proses Karburisasi yang dilakukan pada penelitian ini adalah jenis karburisasi padat, dengan menggunakan media serbuk batubara sebagai sumber karbonnya dan menggunakan barium karbonat (BaCO₃) sebagai katalisatornya. Perbandingan berat antara medium karbon dengan katalisatornya adalah 95% untuk medium karbon dan 5% untuk katalisator. Penelitian yang dilakukan menggunakan medium karburisasi yaitu serbuk batubara dengan berat 900 gram dan untuk katalisator dengan berat 45 gram.

Spesimen yang telah dipersiapkan dimasukkan kedalam kotak persegi empat yang tertutup dan terbuat dari baja, kemudian dibubuhi dengan campuran serbuk batubara sebagai media karbon dan barium karbonat. Setelah bahan-bahan tersebut tercampur secara merata, kemudian kotak yang berisi spesimen pengujian dan bahan-bahan karburisasi dimasukkan kedalam tungku pemanas dan dipanaskan sampai temperatur dan waktu penahanan yang telah ditentukan.

Adapun komposisi kimia batubara terdiri atas banyak unsur dan senyawa seperti yang ditunjukkan oleh tabel 2.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Kandungan Zat</th>
<th>Kadar (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Karbon</td>
<td>84,05</td>
</tr>
<tr>
<td>2</td>
<td>Uap air total</td>
<td>4,5</td>
</tr>
<tr>
<td>3</td>
<td>Hidrogen</td>
<td>3,31</td>
</tr>
<tr>
<td>4</td>
<td>Nitrogen</td>
<td>1,54</td>
</tr>
<tr>
<td>5</td>
<td>Oksigen</td>
<td>11,1</td>
</tr>
</tbody>
</table>

(Sumber: Nakman, 2006).

3.3. Pengujian Kekerasan

Pengujian kekerasan adalah satu dari sekian banyak pengujian yang dipakai, karena dapat dilaksanakan pada benda uji yang kecil tanpa kesulitan mengenai

Metode Rockwell menggunakan dalamnya bekas penekanan sebagai ukuran kekerasan material. Pengujian kekerasan Rockwell cocok untuk semua material yang keras dan yang lunak, penggunaannya sederhana dan penekanannya dapat dengan leluasa. Pengukuran cara Rockwell dapat berlangsung lebih cepat karena skala Rockwell langsung ditunjukkan pada dial indikator. Tabel 3 menunjukkan bagaimana memilih skala Rockwell.

<table>
<thead>
<tr>
<th>Skala</th>
<th>Penekanan</th>
<th>Beban (kg)</th>
<th>Warna Skala</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bola baja 1/16</td>
<td>100</td>
<td>Merah</td>
</tr>
<tr>
<td>RB</td>
<td>Bola 1/16 inch</td>
<td>150</td>
<td>Hitam</td>
</tr>
<tr>
<td>C, Rc</td>
<td>Intan</td>
<td>60</td>
<td>Hitam</td>
</tr>
<tr>
<td>A, A</td>
<td>Intan</td>
<td>100</td>
<td>Hitam</td>
</tr>
<tr>
<td>RA</td>
<td>Intan</td>
<td>100</td>
<td>Merah</td>
</tr>
<tr>
<td>D</td>
<td>Bola baja 1/8 inch</td>
<td>60</td>
<td>Merah</td>
</tr>
<tr>
<td>E</td>
<td>Bola baja 1/16</td>
<td>150</td>
<td>Merah</td>
</tr>
<tr>
<td>F</td>
<td>Bola baja 1/4 inch</td>
<td>150</td>
<td>Merah</td>
</tr>
<tr>
<td>G</td>
<td>Bola baja 1/4 inch</td>
<td>60</td>
<td>Merah</td>
</tr>
</tbody>
</table>

Metode ini menggunakan indentor kencut intan atau bola baja bulat yang dikeraskan. Metode ini lebih efisien dari metode lain. Indentor kencut intan lebih cocok untuk material keras sedangkan bola baja lebih cocok untuk material yang lebih lunak. Beban yang diberikan terdiri dari beban minor awal sebesar 10 kg yang gunanya untuk memecah lapisan tipis yang ada di permukaan benda uji. Kemudian dilanjutkan dengan beban mayor/utama sebesar 60 kg, 100 kg atau 150 kg.

Beberapa hal yang harus diperhatikan dalam pengujian kekerasan adalah:
1. Permukaan benda uji harus rata dan sejajar terhadap meja ukur.
2. Pengukuran kekerasan tidak dilakukan pada titik-titik yang terlalu dekat dengan benda kerja.

3.4. Pengujian Impact

Pada uji impak diukur energi yang diserap untuk mematahkan benda uji. Setelah benda uji patah, bandul berayun kembali. Maksin besar energi yang diserap, makin rendah ayunan kembali dari bandul.

IV. ANALISA DATA

4.1. Pengujian Kekerasan

Pada pengujian ini digunakan alat uji Rockwell. (Rockwell Hardness Tester) Indentor yang digunakan yaitu kencut intan dengan sudut 120°. Beban yang diberikan sebesar 150 kg, dengan beban awal (Preliminary load) 10 kg dan penggunaan beban utama (mainload) sebesar 150 kg. Skala yang digunakan dalam pengujian ini disebut dengan skala HRC. Dari pengujian kekerasan dari setiap proses perlakuan panas dan tempat perlakuan terdiri dari tiga spesimen uji, maka didapat nilai kekerasan rata - rata total dari setiap seperti pada tabel 4 berikut:

<table>
<thead>
<tr>
<th>No</th>
<th>Proses perlakuan</th>
<th>Angka kekerasan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TANPA perlakuan</td>
<td>26,59</td>
</tr>
<tr>
<td>2</td>
<td>Karburisasi - quenching pelumas SAE 140</td>
<td>32,79</td>
</tr>
<tr>
<td>3</td>
<td>Karburisasi - quenching CPO</td>
<td>46,96</td>
</tr>
<tr>
<td>4</td>
<td>Karburisasi - quenching air</td>
<td>59,1</td>
</tr>
</tbody>
</table>

4.2. Pengujian Impak
Pengujian ini bertujuan untuk mengetahui berapa besar energi yang diserap oleh spesimen sampai terjadinya perpatahan, dengan kata lain untuk mengetahui kekuatan impak atau ketangguhan dari spesimen tersebut.

1. Energi Impak Spesimen Tanpa Perlakuan
Untuk spesimen yang tidak dikarburisasi:
\[
\phi = 124°; \alpha = 146,5°; D = 0,6490 \; m; \]
\[
P = 25,68 \; kg = 251,9 \; Newton
\]

Pengaruh Karburisasi dengan Serbuk Batubara Semi Antrasit pada Baja Karbon Medium yang Di-Quenching dengan Minyak Oli Sae 140, Minyak Sawit Mentah dan Air Terhadap Kekerasan dan Ketangguhan
E = P.g.D (Cos φ - Cos α)
= 251,9, 0,6490 (Cos 124° - Cos 146,5°)
= 163,483 {-(0,5591) - -(0,8339)}
= 44,9 Joule

Tabel 5: Karburisasi pada Temperatur 900°. Diquenching dengan variasi media (CPO, Air dan Pelumas SAE 140)

<table>
<thead>
<tr>
<th>No</th>
<th>Media Quenching</th>
<th>Waktu Tahan Karburisasi (menit)</th>
<th>Energi (Joule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CPO</td>
<td>45</td>
<td>24,8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>75</td>
<td>11,1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>105</td>
<td>12,2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>45</td>
<td>12,9</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>75</td>
<td>7,5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>105</td>
<td>7,5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>45</td>
<td>30,1</td>
</tr>
<tr>
<td>8</td>
<td>Pelumas SAE 140</td>
<td>75</td>
<td>49,7</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>105</td>
<td>90</td>
</tr>
</tbody>
</table>

V. PEMBAHASAN

Dari hasil penelitian tentang proses perlakuan panas, yaitu karburisasi dan pengerasan quenching pada baja karbunit medium dapat dilakukan pembahasan yang berkaitan dengan sifat mekanik terhadap masing-masing penguyun yaitu:

1. Pengujian kekerasan
 Dari pengujian kekerasan yang telah dilakukan, dapat dilihat kekerasan logam tanpa perlakuan adalah 26,59 HRc. Pada kondisi temperatur 900°C dengan waktu penahanan 105 menit diperoleh kekerasan yang paling tinggi adalah spesimen dikarburisasi dengan batubara Semi Antrasit dengan penahanan yang diquenching dengan media air yaitu: 59,14 HRc. Peningkatan kekerasan baja karbon medium yang paling rendah adalah pada spesimen yang diquenching dengan pelumas SAE 140 yaitu 32,79 HRc.

2. Pengujian Impact
 Pengujian impact dilakukan untuk mengukur energi yang diserap untuk memotahkan benda uji. Pengujian ini terutama untuk melihat kekuatan impact suatu bahan. Berdasarkan pengujian impak yang telah dilakukan terhadap spesimen yang tidak dikarburisasi dan spesimen yang dikarburisasi dengan variasi Media yang berbeda dan waktu penahanan berbeda dilanjutkan dengan proses quenching dengan media yang berbeda juga, didapatkan energi impact yang paling tinggi terdapat pada spesimen yang dikarburisasi dengan media batubara Semi Antrasit pada temperatur 900°C dengan waktu penahanan 105 menit yaitu 90,52 Joule. Sedangkan spesimen yang tidak dikarburisasi memiliki energi impact yang paling rendah yaitu pada air yaitu 7,50 Joule. Dari data dan kurva diatas menunjukkan bahwa semakin tinggi jumlah karbonnya dan semakin lama waktu penahanannya maka energi impactnya akan menurun. Hal ini disebabkan karena terbentuknya fase sementit yang keras dan getas saat dilakukan proses karburisasi pada temperatur austenitasi sehingga mempengaruhi kekuatan impact spesimen; terkecuali spesimen yang di quenching dengan media pelumas SAE 140 semakin lama penahanan waktu maka akan semakin meningkat energi impactnya.

VI. KESIMPULAN

Berdasarkan penelitian yang telah dilakukan terhadap baja karbon medium yang dikarburisasi media batubara antrasit pada temperatur 900° dan waktu penahanan yang 45, 75, dan 105 menit kemudian diquenching dengan media CPO, pelumas SAE 140 dan air, dapat ditarik kesimpulan yaitu:

1. Kekerasan baja karbon medium meningkat setelah dikarburisasi. Kekerasan pada baja karbon medium tanpa perlakuan 26,6 HRc, pada baja karbon medium yang dikarburisasi dengan media batubara pada temperatur 900°C dengan waktu penahanan (45,75, 105 menit) kemudian diquenching dengan media pelumas SAE 140 adalah 32,7 HRc; dengan media CPO adalah 46,9 HRc; dan media air 59,1 HRc.

3. Energi impact pada baja karbon medium tanpa perlakuan 44,9 Joule, pada baja karbon medium yang dikarburisasi dengan batubara pada temperatur 900°C dengan waktu penahanan (45, 75, 105 menit) kemudian diquenching dengan media pelumas sebesar (30,1, 49,6 ; dan 80,5 Joule), media CPO (24,8; 11,1; dan 12,2 Joule), media air (12,9; 7,5 dan 7,5 Joule).
4. Energi impact pada baja karbon medium yang dikarburisasi dengan batubara pada temperatur 900°C dengan waktu penahanan 105 menit ternyata mempunyai kakuatan energi impact yang paling tinggi diantara spesimen baja karbon medium yang lain.

5. Nilai kekerasan Rockwell HRC yang paling tinggi adalah baja karbon medium yang dikarburisasi dengan media batubara yang diquenching dengan media air dengan waktu penahanan 105 menit yaitu sebesar 59.1 HRC.

6. Spesimen yang dikarburisasi dan di quenching dengan CPO mengalami peningkatan kekerasan dan kekuatan impact yang merata.

VII DAFTAR PUSTAKA

